Answer:
To obtain the power, we first need to find the work made by the force.
1) To calculate the work, we need the next equation:

So the force is given by the problem so our mission is to find 'dx' in terms of 't'
2) we know that:

So we have:

Then:

3) Finally, we replace everything:

After some calculation, we have as a result that the work is:
161.9638 J.
4) To calculate the power we need the next equation:

So
P = 161.9638/4.7 = 34.46 W
Answer:
The temperature of the gas is 1197.02 K
Explanation:
From ideal gas law;
PV = nRT
Where;
P is the pressure of the gas
V is the volume of the gas
R is ideal gas constant = 8.314 L.kPa/mol.K
T is the temperature of the gas
n is the number of moles of gas
Volume of the gas in the cylindrical container = πr²h
Given;
r = 6/2 = 3 cm = 0.03 m
h = 11 cm = 0.11 m
V = π × (0.03)² × 0.11 = 3.11 × 10⁻⁴ m³ = 0.311 L
number of moles of oxygen gas = Reacting mass / molar mass


Therefore, the temperature of the gas is 1197.02 K
<span>The Adirondack Mountains, Taconic Mountains, and the Hudson Highlands have the most resistant bedrock.</span>
If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
Answer: C. The case on the inclined surface had the least decrease intotal mechanical energy.
Explanation:
First and foremost, it should be noted that the mechanical energy is the addition of the potential and the kinetic energy.
From the information given, it should be known that when the block is projected with the same speed v up an incline where is slides to a stop due to friction, the box will lose its kinetic energy but there'll be na increase in the potential energy as a result of the veritcal height. This then brings about an increase in the mechanical energy.
Therefore, the total mechanical energy of the block will decrease the least when the case on the inclined surface had the least decrease intotal mechanical energy.