I think the right answer is the first one. If she stops moving her Position does not change any more-and the Graph Shows that after 6 seconds she stays at the Position of 5 m. If she Went Back to the start point the Graph would have Developed Back to 0m(decreased).
Answer:
Explanation:
Let v be the linear velocity , ω be the angular velocity and I be the moment of inertia of the the puck.
Kinetic energy ( linear ) = 1/2 mv²
Rotational kinetic energy = 1/2 I ω²
I = 1/2 m r² ( m and r be the mass and radius of the puck )
Rotational kinetic energy = 1/2 x1/2 m r² ω²
= 1/4 m v² ( v = r ω )
Total energy
= Kinetic energy ( linear ) + Rotational kinetic energy
= 1/2 mv² + 1/4 m v²
= 3/4 mv²
rotational K E / Total K E = 1/4 m v² / 3/4 mv²
= 1 /3
So 1 /3 rd of total energy is rotational K E.
3.701 kilometers hope that helps
Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are


where
is the initial velocity.
(a).
When the projectile hits the 50m mark,
; therefore,

solving for
we get:

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

which gives

(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

the vertical component of the velocity is

which gives a speed
of


I will post my work, but is that 99 degrees Celsius and 25 degrees Celsius?
All you have to do is plug in the initial temperature for gold where it says Tg and the initial temperature for the water where it says Tw and then plug that in and you will have your answer.