Hertz is a measurement of the frequency that a wave is occurring.
Helium’s state when the decompressed
helium atoms expand and float up, making the rubber balloon expand around them
and float with them is gas.
<span>Helium is a chemical element with symbol He and atomic number 2. It is a
colorless, odorless, tasteless, non-toxic, inert, monatomic gas, the first in
the noble gas group in the periodic table. Its boiling point is the lowest
among all the elements.</span>
Answer:
a)106.48 x 10⁵ kg.m²
b)144.97 x 10⁵ kgm² s⁻¹
Explanation:
a)Given
m = 5500 kg
l = 44 m
Moment of inertia of one blade
= 1/3 x m l²
where m is mass of the blade
l is length of each blade.
Putting all the required values, moment of inertia of one blade will be
= 1/3 x 5500 x 44²
= 35.49 x 10⁵ kg.m²
Moment of inertia of 3 blades
= 3 x 35.49 x 10⁵ kg.m²
= 106.48 x 10⁵ kg.m²
b) Angular momentum 'L' is given by
L =
x ω
where,
= moment of inertia of turbine i.e 106.48 x 10⁵ kg.m²
ω=angular velocity =2π f
f is frequency of rotation of blade i.e 13 rpm
f = 13 rpm=>= 13 / 60 revolution per second
ω = 2π f => 2π x 13 / 60 rad / s
L=
x ω =>106.48 x 10⁵ x 2π x 13 / 60
= 144.97 x 10⁵ kgm² s⁻¹
When the relationship between two variables are said to be proportional, it means that one variable is a constant multiple of the other variable. They are related by a constant of proportionality, usually denoted as k.
In this problem, the dependent variable is the distance in kilometers. Your mileage is limited with the amount of fuel you have. Thus, the independent variable is the liters of fuel. When these two are proportional, it could be expressed as
distance = k * liters of fuel, such that
distance/liters of fuel = k
By variation,
distance,1/liters of fuel,1 = distance,2/liters of fuel,2, where 1 denotes situation 1 and 2 denotes situation 2. Therefore,
999999 km /<span>999 liters = x km /</span><span>121212 liters, where x is the unknown distance. We can now therefore find the value of x.
x = (999999*121212)/999
x = 121333212 kilometers</span>
Answer:
t = 2 s
Explanation:
As we know that fish is pulled upwards with uniform maximum acceleration
then we will have

here we know that maximum possible acceleration of so that string will not break is given as

now we have


now for such acceleration we can use kinematics


t = 2 s