Answer: THE GRAPH IS ATTACHED.
Step-by-step explanation:
We know that the lines are:

Solving for "y" from the first line, we get:

In order to graph them, we can find the x-intercepts and the y-intercepts.
For the line
the x-intercepts is:

And the y-intercept is:

For the line
the x-intercepts is:

And the y-intercept is:

Now we can graph both lines, as you can observe in the image attached (The symbols
and
indicates that the lines must be dashed).
By definition, the solution is the intersection region of all the solutions in the system of inequalities.
Answer
The answer and procedures of the exercise are attached in the following archives.
Step-by-step explanation:
You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.
The formula for getting the accumulated amount(compounded) is;
A =P(1+r%)∧n
Where A = Acumulated amount
P = principle (deposit)
r = interest rate and
n = period
Since the interst is compounded quartly,
period = (5×4)-3 = 17
A = 7100(1+2.8/100)∧17
= 7100×1.028∧17
= 11,353.80
The money she will end up earning in interest on the cd = $11,353.80
Answer:
f(t) = 4(t − 1)2 + 4; the minimum height of the roller coaster is 4 meters from the ground
Step-by-step explanation:
The function is a quadratic where t is time and f(t) is the height from the ground in meters. You can write the function f(t) = 4t2 − 8t + 8 in vertex form by completing the square. Complete the square by removing a GCF from 4t2 - 8t. Take the middle term and divide it in two. Add its square. Remember to subtract the square as well to maintain equality.
f(t) = 4t2 − 8t + 8
f(t) = 4(t2 - 2t) + 8 The middle term is -2t
f(t) = 4(t2 - 2t + 1) + 8 - 4 -2t/2 = -1; -1^2 = 1
f(t) = 4(t-1)^2 + 4 Add 1 and subtract 4 since 4*1 = 4.
The vertex (1,4) means at a minimum the roller coaster is 4 meters from the ground.
- f(t) = 4(t − 1)2 + 2; the minimum height of the roller coaster is 2 meters from the ground
- f(t) = 4(t − 1)2 + 2; the minimum height of the roller coaster is 4 meters from the ground
- f(t) = 4(t − 1)2 + 4; the minimum height of the roller coaster is 1 meter from the ground
- f(t) = 4(t − 1)2 + 4; the minimum height of the roller coaster is 4 meters from the ground
9514 1404 393
Answer:
∛(2500π)√37 m² ≈ 120.911 m²
Step-by-step explanation:
If the height is 3 times the diameter, it is 6 times the radius. Then the volume is ...
V = 1/3πr²h
V = 1/3πr²(6r) = 2πr³
For a volume of 100 m³, the radius is ...
100 m³ = 2πr³
r = ∛(50/π) m
The lateral area of the cone is computed from the slant height. For this cone, the slant height is found using the Pythagorean theorem:
s² = r² +(6r)² = 37r²
s = r√37
Then the lateral area is ...
LA = πrs
LA = π(∛(50/π) m)(∛(50/π) m)√37
LA = ∛(2500π)√37 m² ≈ 120.911 m²