Answer:
Angular acceleration
rad/s^2
Explanation:
Given
Initial Angular velocity (w1)
rad/s
Final Angular velocity (w2)
rad/s
Time taken to change velocity from w1 to w2
seconds
Angular acceleration is equal to the change in angular velocity to the time taken for making thing change
Hence, Angular acceleration
rad/s^2
Answer:
a. 2 Hz b. 0.5 cycles c . 0 V
Explanation:
a. What is period of armature?
Since it takes the armature 30 seconds to complete 60 cycles, and frequency f = number of cycles/ time = 60 cycles/ 30 s = 2 cycles/ s = 2 Hz
b. How many cycles are completed in T/2 sec?
The period, T = 1/f = 1/2 Hz = 0.5 s.
So, it takes 0.5 s to complete 1 cycles. At t = T/2 = 0.5/2 = 0.25 s,
Since it takes 0.5 s to complete 1 cycle, then the number of cycles it completes in 0.25 s is 0.25/0.5 = 0.5 cycles.
c. What is the maximum emf produced when the armature completes 180° rotation?
Since the emf E = E₀sinθ and when θ = 180°, sinθ = sin180° = 0
E = E₀ × 0 = 0
E = 0
So, at 180° rotation, the maximum emf produced is 0 V.
Color <span>is a physical property of all visible light determined by the light's frequency and visible to the human eye.</span>
Answer:
(B) (length)/(time³)
Explanation
The equation x = ½ at² + bt³ has to be dimensionally correct. In other words the term bt³ and ½ at² must have units of change of position = length.
We solve in order to find the dimension of b:
[x]=[b]*[t]³
length=[b]*time³
[b]=length/time³
Answer:
A. the wave speed v and Wavelength
Explanation:
Given that
Mass density per unit length=μ
Frequency = f
The velocity V given as


T=Tension
V=Velocity
V= f λ
λ=Wavelength
Therefore to find the tension ,only wavelength and speed is required.
The answer is A.