answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WARRIOR [948]
2 years ago
8

A 6.0-ohm resistor that obeys Ohm’s Law is connected to a source of variable potential difference. When the applied voltage is d

ecreased from 12 V to 6 V, the current passing through the resistor
a.
remains the same
b.
is doubled
c.
is halved
d.
is quadrupled
Physics
1 answer:
leva [86]2 years ago
5 0

Is halved. A 6Ω resistor connected to a voltage source which voltage is decreased from 12V to 6V the current passing through the resistor is halved.

The key to solve this problem is applying Ohm's Law V = R I, clearing I from the equation, we obtain I = V/R. Then, the current is directly proportional to the voltage and inversely proportional to the resistance.

V = 12V and R = 6Ω

I = 12V/6Ω = 2A

V = 6V and R = 6Ω

V = 6V/6Ω = 1A

As we can see the current is halved if the voltage descreased from 12V to 6V

You might be interested in
Inna Hurry is traveling at 6.8 m/s, when she realizes she is late for an appointment. She accelerates at 4.5 m/s^2 for 3.2 s. Wh
Alborosie

Answer:

1) v = 21.2 m/s

2) S = 63.33 m

3) s = 61.257 m

4) Deceleration, a = -4.32 m/s²

Explanation:

1) Given,

The initial velocity of Inna, u = 6.8 m/s

The acceleration of Inna, a = 4.5 m/s²

The time of travel, t = 3.2 s

Using the first equation of motion, the final velocity is

                v = u + at

                   = 6.8 + 4.5 x 3.2

                   = 21.2 m/s

The final velocity of Inna is, v = 21.2 m/s

2) Given,

The initial velocity of Lisa, u = 12 m/s

The final velocity of Lisa, v = 26 m/s

The acceleration of Lisa, a = 4.2 m/s²

Using the III equations of motion, the displacement is

                          v² = u² +2aS

                         S = (v² - u²) / 2a

                            = (26² -12²) / 2 x 4.2

                            = 63.33 m

The distance Lisa traveled, S = 63.33 m

3) Given,

The initial velocity of Ed, u = 38.2 m/s

The deceleration of Ed, d = - 8.6 m/s²

The time of travel, t = 2.1 s

Using the II equations of motion, the displacement is

                        s = ut + 1/2 at²

                           =38.2 x 2.1 + 0.5 x(-8.6) x 2.1²

                           = 61.257 m

Therefore, the distance traveled by Ed, s = 61.257 m

4) Given,

The initial velocity of the car, u = 24.2 m/s

The final velocity of the car, v = 11.9 m/s

The time taken by the car is, t = 2.85 s

Using the first equations of motion,

                         v = u + at

∴                        a = (v - u) / t

                            = (11.9 - 24.2) / 2.85

                            = -4.32 m/s²

Hence, the deceleration of the car, a = = -4.32 m/s²

5 0
2 years ago
Read 2 more answers
The reaction energy of a reaction is the amount of energy released by the reaction. It is found by determining the difference in
solmaris [256]

Answer: the correct answer is 7.8026035971 x 10^(-13) joule

Explanation:

Use Energy Conservation. By ``alpha decay converts'', we mean that the parent particle turns into an alpha particle and daughter particles. Adding the mass of the alpha and daughter radon, we get

m = 4.00260 u + 222.01757 u = 226.02017 u .

The parent had a mass of 226.02540 u, so clearly some mass has gone somewhere. The amount of the missing mass is

Delta m = 226.02540 u - 226.02017 u = 0.00523 u ,

which is equivalent to an energy change of

Delta E = (0.00523 u)*(931.5MeV/1u)

Delta E = 4.87 MeV

Converting  4.87 MeV to Joules

1 joule [J] = 6241506363094 mega-electrón voltio [MeV]

4 mega-electrón voltio = 6.40870932 x 10^(-13) joule

4.87 mega-electrón voltio = 7.8026035971 x 10^(-13) joule

5 0
2 years ago
A block of mass 2.00 kg is initially at rest at x=0 on a slippery horizontal surface for which there is no friction. Starting at
Allisa [31]

Answer:

   x = 1,185 m ,     t = 4/3 s ,  F = - 4 N

Explanation:

For this exercise we use Newton's second law

         F = m a = m dv /dt

        β - α t = m dv / dt

        dv = (β – α t) dt

     

We integrate

        v = β t - ½ α t²

We evaluate between the lower limits v = v₀ for t = 0 and the upper limit v = v for t = t

       v-v₀ = β t - ½ α t²

the farthest point of the body is when v = v₀ = 0

  0 = β t - ½ α t²

  t = 2 β / α

  t = 2 4/6

  t = 4/3 s

Let's find the distance at this time

   v = dx / dt

   dx / dt = v₀ + β t - ½ α t2

   dx = (v₀ + β t - ½ α t2) dt

We integrate

   x = v₀ t + ½ β t - ½ 1/3 α t³

   x = v₀ 4/3 + ½ 4 (4/3)² - 1/6 6 (4/3)³

The body comes out of rest

    x = 3.5556 - 2.37

    x = 1,185 m

The value of force is

    F = β - α t

    F = 4 - 6 4/3

   F = - 4 N

8 0
2 years ago
A 60-μC charge is held fixed at the origin and a −20-μC charge is held fixed on the x axis at a point x = 1.0 m. If a 10-μC char
Aleksandr [31]

Answer:

Ek =  8,79 [J]

Explanation:

We are going to solve this problem, using  the energy conservation principle

State 1 or initial state (charges at rest t=0)

E₁  = Ek  + U₁

As charge are at rest Ek = 0

And  U₁ has two components

U₁₂   = K * Q₁*Q₂ / 0,4          and    U₃₂  = K*Q₃*Q₂ / 0,6

U₁₂  = 9*10⁹* 60*10⁻⁶*10*10⁻⁶/0,4  ⇒ U₁₂ = 9*60*10*10⁻³/0,4

U₃₂ =  - 9*10⁹* 20*10⁻⁶*10*10⁻⁶/0,6  ⇒ U₃₂ = - 9*20*10*10⁻³/0,6

U₁₂ = 540*10⁻2/0,4 [J]   ⇒13,5 [J]

U₃₂ = - 180*10⁻² /0,6 [J] ⇒ - 3 [J]

Then   E₁ = E₁₂ + E₃₂    

E₁ = 10,5 [J]

At  the moment of Q₂ passing x = 40 cm  or 0,4 m

E₂ = Ek + U₂

We can calculate the components of U₂ in this new configuration

U₂  =  U₁₂  + U₃₂

U₁₂  = 9*10⁹* 60*10⁻⁶*10*10⁻⁶/0,7   ⇒  U₁₂ = 9*60*10*10⁻³/0,7

U₁₂ = 540*10⁻²/0,7       U₁₂ = 7,71 [J]

U₃₂ =  - 9*10⁹* 20*10⁻⁶*10*10⁻⁶/0,3  ⇒ U₃₂ = -  9*20*10*10⁻³/0,3

U₃₂ = -  9*20*10⁻²/0,3  

U₃₂ = - 6

U₂ = 7,71 -6

U₂ = 1,71 [J]

Then as  

E₂  = Ek + U₂  and  E₂ = E₁

Then

Ek + U₂ = E₁

Ek =  10,5 - U₂    

Ek  = 10,5 - 1,71

Ek =  8,79 [J]

5 0
1 year ago
An electric motor consumes 9.00 kj of electrical energy in 1.00 min. if one-third of this energy goes into heat and other forms
liq [111]
How do I make a question help PLZZZ
5 0
2 years ago
Other questions:
  • Which is the least likely cause of an engine to hunt and surge at top no-load speeds? A lean air/fuel mixture An incorrect spark
    12·2 answers
  • What type of roadway has the highest number of hazards per mile?
    6·1 answer
  • A ball is dropped from the top of a building.After 2 seconds, it’s velocity is measured to be 19.6 m/s. Calculate the accelerati
    12·2 answers
  • (1 point) Which of the following statements are true?A.The equation Ax=b is referred to as a vector equation.B.If the augmented
    10·1 answer
  • An infinite sheet of charge, oriented perpendicular to the x-axis, passes through x = 0. It has a surface charge density σ1 = -2
    6·1 answer
  • How could the combustibility of a substance influence how the substances used
    11·1 answer
  • You are working as an assistant to an air-traffic controller at the local airport, from which small airplanes take off and land.
    14·1 answer
  • A wire in a uniform magnetic field of 0.350 T carries a current of 3.50 A. If the magnitude of the magnetic force per unit lengt
    13·1 answer
  • 1. Determina el momento que produce una fuerza de 7 N tangente a una rueda de un metro de diámetro, sabiendo que el punto de apl
    5·1 answer
  • A roller coaster moving along its track rolls into a circular loop of radius r. In the loop, it is only affected by its initial
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!