answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liraira [26]
2 years ago
12

The mean free path of a helium atom in helium gas at standard temperature and pressure is 0.2 um.What is the radius of the heliu

m atom in nanometers?
Physics
1 answer:
ivolga24 [154]2 years ago
5 0

Answer: 0.10233nm

Explanation:

The mean free path \lambda   of an atom is given by the following formula:

\lambda=\frac{RT}{\sqrt{2} \pi d^{2}N_{A}P}    (1)

Where:

\lambda=0.2\mu m=0.2(10)^{-6}m

R=8.3145J/mol.K is the Universal gas constant

T=0\°C=273.115K is the absolute standard temperature

d is the diameter of the helium atom

N_{A}=6.0221(10)^{23}/mol is the Avogadro's number

P=1atm=101.3kPa=101.3(10)^{3}Pa=101.3(10)^{3}J/m^{3} absolute standard pressure

Knowing this, let's find d from (1), in order to find the radius r of the helium atom:

d=\sqrt{\frac{RT}{\sqrt{2}\pi\lambda N_{A}P}}    (2)

d=\sqrt{\frac{(8.3145J/mol.K)(273.115K)}{\sqrt{2}\pi(0.2(10)^{-6}m)(6.0221(10)^{23}/mol)(101.3(10)^{3}J/m^{3})}}    (3)

d=2.0467(10)^{-10}m    (4)

If the radius is half the diameter:

r=\frac{d}{2}  (5)

Then:

r=\frac{2.0467(10)^{-10}m}{2}  (6)

r=1.0233(10)^{-10}m  (7)

However, we were asked to find this radius in nanometers. Knowing 1nm=(10)^{-9}m:

r=1.0233(10)^{-10}m.\frac{1nm}{(10)^{-9}m}=0.10233nm  (8)

Finally:

r=0.10233nm This is the radius of the helium atom in nanometers.

You might be interested in
a 160 kilogram space vehicle is traveling along a straight line at a constant speed of 800 meters per second. The magnitude of t
Cloud [144]
Anything that's moving in a straight line at a constant speed has zero acceleration, and that tells us that there is zero net force acting on it.
5 0
2 years ago
A bird is flying in a room with a velocity field of . Calculate the temperature change that the bird feels after 9 seconds of fl
Korvikt [17]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The temperature change is \frac{dT}{dt} = 1.016 ^oC/m

Explanation:

From the question we are told that

   The velocity field with which the bird is flying is  \vec V =  (u, v, w)= 0.6x + 0.2t - 1.4 \ m/s

   The temperature of the room is  T(x, y, u) =  400 -0.4y -0.6z-0.2(5 - x)^2 \  ^o C

    The time considered is  t =  10 \  seconds

    The  distance that the bird flew is  x  =  1 m

 Given that the bird is inside the room then the temperature of the room is equal to the temperature of the bird

Generally the change in the bird temperature with time is mathematically represented as

      \frac{dT}{dt} = -0.4 \frac{dy}{dt} -0.6\frac{dz}{dt} -0.2[2 *  (5-x)] [-\frac{dx}{dt} ]

Here the negative sign in \frac{dx}{dt} is because of the negative sign that is attached to x in the equation

 So

       \frac{dT}{dt} = -0.4v_y  -0.6v_z -0.2[2 *  (5-x)][ -v_x]

From the given equation of velocity field

    v_x  =  0.6x

    v_y  =  0.2t

     v_z  =  -1.4

So

\frac{dT}{dt} = -0.4[0.2t]  -0.6[-1.4] -0.2[2 *  (5-x)][ -[0.6x]]    

substituting the given values of x and t

\frac{dT}{dt} = -0.4[0.2(10)]  -0.6[-1.4] -0.2[2 *  (5-1)][ -[0.61]]      

\frac{dT}{dt} = -0.8 +0.84 + 0.976  

\frac{dT}{dt} = 1.016 ^oC/m  

5 0
2 years ago
A block with mass m = 0.450 kg is attached to one end of an ideal spring and moves on a horizontal frictionless surface. The oth
svetoff [14.1K]

Answer:

k = 26.25 N/m

Explanation:

given,

mass of the block= 0.450

distance of the block = + 0.240

acceleration = a_x = -14.0 m/s²

velocity = v_x = + 4 m/s

spring force constant (k) = ?

we know,

x = A cos (ωt - ∅).....(1)

v = - ω A cos (ωt - ∅)....(2)

a = ω²A cos (ωt - ∅).........(3)

\omega = \sqrt{\dfrac{k}{m}}

now from equation (3)

a_x = \dfrac{k}{m}x

k = \dfrac{m a_x}{x}

k = \dfrac{0.45 \times (-14)}{0.24}

k = 26.25 N/m

hence, spring force constant is equal to k = 26.25 N/m

8 0
2 years ago
Read 2 more answers
A propagating wave in space with electric and magnetic components. These components oscillate at right angles to each other. It
zimovet [89]

Answer:

electromagnetic

Explanation:

8 0
2 years ago
Read 2 more answers
Electric charge is uniformly distributed inside a nonconducting sphere of radius 0.30 m. The electric field at a point P, which
krok68 [10]

Answer:

E_{max}=41666.66\ N/C

Explanation:

Given that,

The radius of sphere, r = 0.3 m

Distance from the center of the sphere to the point P, x = 0.5 m

Electric field at point P, E_P=15000\ N/C (radially outward)

The maximum electric field is at the surface of the sphere. We know that the electric field is inversely proportional to the distance. So,

\dfrac{E_{max}}{E_p}=\dfrac{0.5^2}{0.3^2}

\dfrac{E_{max}}{15000}=\dfrac{0.5^2}{0.3^2}

{E_{max}}=\dfrac{0.5^2}{0.3^2}\times 15000

E_{max}=41666.66\ N/C

So, the magnitude of the electric field due to this sphere is 41666.66 N/C. Hence, this is the required solution.

6 0
2 years ago
Other questions:
  • The weight of a metal bracelet is measured to be 0.100 N in air and 0.092 N when immersed in water. Find its density
    12·1 answer
  • The work function for tungsten metal is 4.52eV a. What is the cutoff (threshold) wavelength for tungsten? b. What is the maximum
    12·1 answer
  • A power washer is being used to clean the siding of a house. Water enters at 20 C, 1 atm, with a volumetric flow rate of 0.1 lit
    13·1 answer
  • A 65 kg person jumps from a window to a fire net 18 m below, which stretches the net 1.1 m. Assume the net behaves as a simple s
    11·1 answer
  • A boy of mass 80 kg slides down a vertical pole, and a frictional force of 480 N acts on him. What is his acceleration as he sli
    5·1 answer
  • To navigate, a porpoise emits a sound wave that has a wavelength of 2.2 cm. The speed at which the wave travels in seawater is 1
    5·1 answer
  • A long, thin rod parallel to the y-axis is located at x = -1.0 cm and carries a uniform linear charge density of +1.0 nC/m. A se
    6·1 answer
  • Rubber rods charged by rubbing with cat fur repel each other. Glass rods charged by rubbing with silk repel each other. A rubber
    13·1 answer
  • You have a device that needs a voltage reference of 3.0 V, but you have only a 9.0 V battery. Fortunately, you also have several
    12·2 answers
  • A wire loop is suspended from a string that is attached to point P in the drawing. When released, the loop swings downward, from
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!