answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grigory [225]
2 years ago
3

A straight wire that is 0.60 m long is carrying a current of 2.0 A. It is placed in a uniform magnetic field of strength 0.30 T.

If the wire experiences a force of 0.18 N, what angle does the wire make with respect to the magnetic field?
Physics
1 answer:
ruslelena [56]2 years ago
4 0

Answer:

Angle the wire make with respect to the magnetic field is 30°.

Explanation:

It is given that,

Length of wire, L = 0.6 m

Current flowing in the wire, I = 2 A

Magnetic field strength, B = 0.3 T

It is placed in the magnetic field. It will experience a force of, F = 0.18 N. We need to find the angle the wire make with respect to the magnetic field. The force acting on the wire is given by :

F=I(L\times B)

F=ILB\ sin\theta

\theta=sin^{-1}(\dfrac{F}{ILB})

\theta=sin^{-1}(\dfrac{0.18\ N}{2\ A\times 0.6\ m\times 0.3\ T})

\theta=30^{\circ}

So, the angle the wire make with respect to the magnetic field is 30°. Hence, this is the required solution.

You might be interested in
You are driving to the grocery store at 20 m/s. You are 110m from an intersection when the traffic light turns red. Assume that
oksano4ka [1.4K]

As we know that reaction time will be

t = 0.50 s

so the distance moved by car in reaction time

d = vt

d = 20 \times 0.50

d = 10 m

now the distance remain after that from intersection point is given by

d = 110 - 10 = 100 m

So our distance from the intersection will be 100 m when we apply brakes

now this distance should be covered till the car will stop

so here we will have

v_f = 0

v_i = 20 m/s

now from kinematics equation we will have

v_f^2 - v_i^2 = 2 a d

0 - 20^2 = 2(a)100

a = \frac{-400}{200} = -2 m/s^2

so the acceleration required by brakes is -2 m/s/s

Now total time taken to stop the car after applying brakes will be given as

v_f - v_i = at

0 - 20 = -2 (t)

t = 10 s

total time to stop the car is given as

T = 10 s + 0.5 s = 10.5 s

3 0
2 years ago
For metalloids on the periodic table, how do the group number and the period number relate?
lapo4ka [179]
Im guessing it's (a) since the numbers go in chronological order and you read the periodic table left to right
3 0
2 years ago
Read 2 more answers
Find your mass if a scale on earth reads 650 N when you stand on it.
netineya [11]

Weight = (mass) x (gravity)

Acceleration of gravity on Earth = 9.8 m/s²

                                           Weight on Earth = (mass) x (9.8 m/s²)

Divide each side by  (9.8 m/s²):          Mass = (weight) / (9.8 m/s²)

                                                            Mass = (650 N) / (9.8 m/s²)

                                                           Mass = 66.33 kg  (rounded)
 
7 0
2 years ago
A tennis player standing 12.6m from the net hits the ball at 3.00 degrees above the horizontal. To clear the net, the ball must
mezya [45]
We actually don't need to know how far he/she is standing from the net, as we know that the ball reaches its maximum height (vertex) at the net. At the vertex, it's vertical velocity is 0, since it has stopped moving up and is about to come back down, and its displacement is 0.33m. So we use v² = u² + 2as (neat trick I discovered just then for typing the squared sign: hold down alt and type 0178 on ur numpad wtih numlock on!!!) ANYWAY....... We apply v² = u² + 2as in the y direction only. Ignore x direction. 
IN Y DIRECTION: v² = u² + 2as 0 = u² - 2gh u = √(2gh) (Sub in values at the very end) 
So that will be the velocity in the y direction only. But we're given the angle at which the ball is hit (3° to the horizontal). So to find the velocity (sum of the velocity in x and y direction on impact) we can use: sin 3° = opposite/hypotenuse = (velocity in y direction only) / (velocity) So rearranging, velocity = (velocity in y direction only) / sin 3° = √(2gh)/sin 3° = (√(2 x 9.8 x 0.33)) / sin 3° = 49 m/s at 3° to the horizontal (2 sig figs)
4 0
2 years ago
Read 2 more answers
The weight of a 72.0 kg astronaut on the Moon, where g = 1.63 m/s2 is (5 points) Select one: a. 112 N b. 117 N c. 135 N d. 156 N
kipiarov [429]

Answer: The weight of a 72.0 kg astronaut on the Moon is 117.36 N.

Explanation:

Mass of the astronaut on the moon , m= 72 kg

Acceleration due to gravity on moon,g  = 1.63 m/s^2

According to Newton second law of motion: F = ma

This will changes to = Weight = mass × g

Weight=72 kg\times 1.63m/s^2=117.36 N

The weight of a 72.0 kg astronaut on the Moon is 117.36 N.

7 0
2 years ago
Read 2 more answers
Other questions:
  • Which of the following are linear defects?. . An edge dislocation. . A Frenkel defect. . A screw dislocation. . A Schottky defec
    6·1 answer
  • A boat takes off from the dock at 2.5 m/s and speeds up at 4.2 m/s2 for 6.0 s. How far has the boat traveled? Round your answer
    10·2 answers
  • A top of rotational inertia 4.0 kg m2 receives a torque of 2.4 nm from a physics professor. the angular acceleration of the body
    12·1 answer
  • While camping in Denali National Park in Alaska, a wise camper hangs his pack of food from a rope tied between two trees, to kee
    9·1 answer
  • An astronaut at rest on earth has a heartbeat rate of 70 beats/min. what will this rate be when she is traveling in a spaceship
    14·1 answer
  • A circular surface with a radius of 0.057 m is exposed to a uniform external electric field of magnitude 1.44 × 104 N/C. The mag
    8·1 answer
  • According to the Revere and Black (2003) article, processes that result in an error probability of 0.000070 should be recognized
    8·1 answer
  • On a guitar, the lowest toned string is usually strung to the E note, which produces sound at 82.4 82.4 Hz. The diameter of E gu
    12·1 answer
  • To fully describe the photoelectric effect, scientists must consider which of
    9·1 answer
  • A kinesin that is transporting a secretory vesicle uses approximately 80 ATP molecules/s. Each ATP provides a kinesin molecule w
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!