Answer:
The answer to your question is: W = 390 J
Explanation:
Work is the transfer of energy when a body is moved from one place to another.
Data
Force = 65 N
mass = 45 kg
distance = 6 meters
work = ? J
Formula
W = F x d
Process
W = 65 N x 6 m
W = 390 J
Answer:
0.002925 m
Explanation:
Lt = LO(1 +α Δt ) here Lt is total length Lo is original length α is coefficient of linear expansion and Δt is change in temperature
<h2>for aluminium</h2>
α=25×10^-6
Lt = 5(1+25×10^-6×(70-20))
Lt = 5 (1+25×10^-6×50)
Lt = 5 ( 1+0.00125)
Lt = 5×1.00125
Lt =5.00625 m
<h2>for nickel </h2>
α=13.3×10^-6
Lt =5(1+13.3×10^-6×50)
Lt = 5(1+0.000665)
Lt =5.003325 m
hence difference in length =5.00625-5.003325
= 0.002925 m
Answer: there are 15 coins of $2 and 18 coins of $5
Explanation:
I will answer in English.
X is the number of $5 coins.
Y is the number of $2 coins.
We have the system of equations:
Y + X = 33
Y*2 + X*5 = 120
first, we must isolate one of the variables in one of the equations and then replace it in the other equation, let's isolate Y in the first equation:
Y = 33 - X.
Then we can replace it in the other equation:
(33 - X)*2 + X*5 = 120
66 - X*2 + X*5 = 120
X*3 = 54
X = 54/3 = 18
and using the equation for Y.
Y = 33 - X = 33 - 18 = 15
So there are 15 coins of $2 and 18 coins of $5
The temperature and the solubility of sugar at that temperature
Explanation:
The amount of substance which can be dissolved in the solvent depends on the temperature.
As the temperature increases, more substance can be dissolved.
A solution is saturated if any more of the solute cannot be dissolved in the solution at the given temperature
Hence we need to know the temperature and also the amount of substance which can be dissolved(solubility) at the same temperature
a) the statement given in option A is correct
b) molar mass has no correlation with the substance's solubility and hence option b is not correct
c) The percent by volume of the solution is not needed to find if the solution is saturated and hence option c is not correct
Answer:
a) 4.485 kg b) 3.94 kg
Explanation:
since the maximum tension the line can stand is 44 N and for question a the speed is constant (acceleration must be zero since the velocity or speed is not changing), F(tension) = mass * acceleration due to gravity (g) .
44 = m * 9.81m/s^2
m = 44/9.81 = 4.485kg
b) F(tension) = ma + mg ( where a is the acceleration of the body and g is the acceleration of the gravity)
44 = m (a +g)
44 = m (1.37 + 9.81)
44/11.18 = m
m = 3.94 kg