Answer:195 J
Explanation:
Given
mass of ball 
ball leaves the hand with 
maximum height reached by ball 
Initial Mechanical energy when ball just leaves the hand


considering hand to be datum so h_1=0[/tex]
so Potential energy at ground is zero


Mechanical Energy at highest point

at highest Point velocity is zero



Decrease in Mechanical energy


This type of listening response is called back-channel signal. This allows the speaker to know that the listener is attentive or willing to engage a conversation between them. It is shown through short utterances, facial expressions, head nods and others.
Kinetic energy is calculated through the equation,
KE = 0.5mv²
At initial conditions,
m₁: KE = 0.5(0.28 kg)(0.75 m/s)² = 0.07875 J
m₂ : KE = 0.5(0.45 kg)(0 m/s)² = 0 J
Due to the momentum balance,
m₁v₁ + m₂v₂ = (m₁ + m₂)(V)
Substituting the known values,
(0.29 kg)(0.75 m/s) + (0.43 kg)(0 m/s) = (0.28 kg + 0.43 kg)(V)
V = 0.2977 m/s
The kinetic energy is,
KE = (0.5)(0.28 kg + 0.43 kg)(0.2977 m/s)²
KE = 0.03146 J
The difference between the kinetic energies is 0.0473 J.
The question above can be answered through using the concept of Conservation of Momentum which may be expressed as,
m1v1 + m2v2 = mTvT
where m1 and v1 are mass and initial velocity of Tex, 2s are that of the bull, and the Ts are the total. Then substituting,
(85 kg)(3 m/s) + (520 kg)(13 m/s) = (520 + 85)(vT)
The value of vT obtained from above equation is 11.6 m/s
Fortunately, 'force' is a vector. So if you know the strength and direction
of each force, you can easily addum up and find the 'resultant' (net) force.
When we talk in vectors, one newton forward is the negative of
one newton backward. Hold that thought, while I slog through
the complete solution of the problem.
(100 N forward) plus (50 N backward)
= (100 N forward) minus (50 N forward)
= 50 N forward .
That's it.
Is there any part of the solution that's not clear ?