Answer: 14.52*10^6 m/s
Explanation: In order to explain this problem we have to consider the energy conservation for the electron within the coaxial cylidrical wire.
the change in potential energy for the electron; e*ΔV is equal to energy kinetic gained for the electron so:
e*ΔV=1/2*m*v^2 v^=(2*e*ΔV/m)^1/2= (2*1.6*10^-19*600/9.1*10^-31)^1/2=14.52 *10^6 m/s
Answer:
51.2 mi/h
Explanation:
Total distance, d = 100 miles
First 60 miles with speed 55 mi/h
Next 40 miles with speed 75 mi/h
Time taken for first 60 miles, t1 = 60 / 55 = 1.09 h
Time taken for 40 miles, t2 = 40 / 75 = 0.533 h
Time spent to get stuck, t3 = 20 min = 0.33 h
Total time, t = t1 + t2 + t3 = 1.09 + 0.533 + 0.33 = 1.953 h
The average speed is defined as the ratio of total distance traveled to the total time taken.
Average speed = 
Thus, the average speed of the journey is 51.2 mi/h.
Answer:
Frequency will be equal to 5.20 kHz
So option (c) will be correct answer
Explanation:
We have given value of capacitance 
Potential difference across capacitor V = 12 volt
Current through capacitor 
Capacitive reactance will be equal to 
Capacitive reactance is equal to 




f = 5.20 kHz
So frequency will be equal to 5.20 kHz
So option (c) will be correct answer
r = radius of the circle of the ride = 3.00 meters
v = linear speed of the person during the ride = 17.0 m/s
m = mass of the person in angular motion in the ride
L = angular momentum of the person in the ride = 3570 kg m²/s
Angular momentum is given as
L = m v r
inserting the values
3570 kg m²/s = m (17 m/s) (3.00 m)
m = 3570 kg m²/s/(51 m²/s)
m = 7 kg
hence the mass comes out to be 7 kg
Answer:
both cannonballs hit the ships with the same horizontal speed
Explanation:
Hello!
A parabolic motion is characterized in that its vertical component in Y is constantly changing, this is due to the constant downward acceleration of gravity.
When the movement starts the speed at Y is maximum, then when it reaches its maximum height point its speed is zero, and finally it begins to increase downwards until it touches the floor.
On the other hand, the horizontal speed remains constant AS THERE IS NO ACCELERATION IN HORIZONTAL DIRECTION.
therefore both cannonballs hit the ships with the same horizontal speed
regards!