Answer:
r = 71.8⁰
Explanation:
given,
refractive index of the glass 1 = 1.70
refractive index of glass 2 = 1.58
angle of incidence = 62°
angle of refraction =?
using Snell's law


1.7 ×sin 62 ^0 = 1.58× sin r

sin r = 0.95
r = sin⁻¹(0.95)
r = 71.8⁰
angle of refraction =r = 71.8⁰
Answer:
2.7x10⁻⁸ N/m²
Explanation:
Since the piece of cardboard absorbs totally the light, the radiation pressure can be found using the following equation:

<u>Where:</u>
: is the radiation pressure
I: is the intensity of the light = 8.1 W/m²
c: is the speed of light = 3.00x10⁸ m/s
Hence, the radiation pressure is:

Therefore, the radiation pressure that is produced on the cardboard by the light is 2.7x10⁻⁸ N/m².
I hope it helps you!
Let Karen's forward speed be considered as positive.
Therefore, before the headband is tossed backward, the speed of the headband is
V = 9 m/s
The headband is tossed backward relative to Karen at a speed of 20 m/s. Therefore the speed of the headband relative to Karen is
U = -20 m/s
The absolute speed of the headband, relative to a stationary observer is
V - U
= 9 + (-20)
= - 11 m/s
Answer:
The stationary observes the headband traveling (in the opposite direction to Karen) at a speed of 11 m/s backward.
Density is the characteristic property of a substance. It is the measure of mass of the substance
divided by its volume (density= mass/volume). Manipulate the given formula to
come up with the formula for the volume. Therefore, volume is equals to mass of
a substance divided by its density (Vol= mass/density). Given 12.6 g/ml as density
and 7.65 g mass, volume is equals to 0.60714 ml, since 1 ml = 1cm^3, volume is
equals to 0.60714 cm^3 then extract the cube root of the volume to get the
length of the cube in cm which is equal to 0.84677 cm.
Answer:
B) form a straight line with the Moon in the middle.
Explanation:
- For the occurrence of a solar eclipse the earth and the moon and the sun must be in a straight line and moon should be in center of the earth so that it completely blocks the rays of the sun and the shadow falls on earth and the sun appears to form a ring and thus the eclipse takes place.