The given concentration of boric acid = 0.0500 M
Required volume of the solution = 2 L
Molarity is the moles of solute present per liter solution. So 0.0500 M boric acid has 0.0500 mol boric acid present in 1 L solution.
Calculating the moles of 0.0500 M boric acid present in 2 L solution:

Converting moles of boric acid to mass:

Therefore, 6.183 g boric acid when dissolved and made up to 2 L with distilled water gives 0.0500 M solution.
<span>100.
ppb of chcl3 in drinking water means 100 g of CHCl3 in 1,000,0000,000 g of water
Molarity, M
M = number of moles of solute / volume of solution in liters
number of moles of solute = mass of CHCl3 / molar mass of CHCl3
molar mass of CHCl3 = 119.37 g/mol
number of moles of solute = 100 g / 119.37 g/mol = 0.838 mol
using density of water = 1 g/ ml => 1,000,000,000 g = 1,000,000 liters
M = 0.838 / 1,000,000 = 8.38 * 10^ - 7 M <----- answer
Molality, m
m = number of moles of solute / kg of solvent
number of moles of solute = 0.838
kg of solvent = kg of water = 1,000,000 kg
m = 0.838 moles / 1,000,000 kg = 8.38 * 10^ - 7 m <----- answer
mole fraction of solute, X solute
X solute = number of moles of solute / number of moles of solution
number of moles of solute = 0.838
number of moles of solution = number of moles of solute + number of moles of solvent
number of moles of solvent = mass of water / molar mass of water = 1,000,000,000 g / 18.01528 g/mol = 55,508,435 moles
number of moles of solution = 0.838 moles + 55,508,435 moles = 55,508,436 moles
X solute = 0.838 / 55,508,435 = 1.51 * 10 ^ - 8 <------ answer
mass percent, %
% = (mass of solute / mass of solution) * 100 = (100g / 1,000,000,100 g) * 100 =
% = 10 ^ - 6 % <------- answer
</span>
18.4 * 10^9 lbs = (18.4 * 10^9)/2000 tons
Cost = ((18.4 * 10^9)/2000 ) * 318
Cost = $ 2925600000
Answer:

Explanation:
The expression for Clausius-Clapeyron Equation is shown below as:
Where,
P is the vapor pressure
ΔHvap is the Enthalpy of Vaporization
R is the gas constant (8.314×10⁻³ kJ /mol K)
c is the constant.
For two situations and phases, the equation becomes:

Given:
= 13.95 torr
= 144.78 torr
= 25°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25 + 273.15) K = 298.15 K
= 298.15 K
= 75°C = 348.15 K
So,





Answer:
NUCLEAR ENERGY -----> MECHANICAL ENERGY -------> THERMAL ENERGY --------> ELECTRICAL ENERGY
Explanation:
In nuclear reactor, various energy transformations occur in order to generate electricity. Nuclear reactor converts the energy released from nuclear fission and the heat generated is removed from the reactor by a cooling system where steam is generated. The steam then drives a turbine which powers a generator to produce electricity.
A nuclear reactor is hence an equipment where nuclear chain reactions occur and control can be obtained. The nuclear reactor uses mostly uranium-235 and Plutonium-239. When these radioactive substances absorbs neutrons, they undergo nuclear fission causing the nucleus to split into two or more smaller compounds with the release of kinetic energy a form of mechanical energy, gamma radiations and others.The kinetic energy is then harnessed in the equipment as heat (thermal energy) which is received by a cooling system and steam is generated. The steam can then power the generator from which electricity is obtained (electrical energy).
So therefore, in a nuclear reactor, the nuclear energy is transformed to mechanical energy and then thermal energy which powers the generation of the electrical energy.