Using the combined gas law, where PV/T = constant, we first solve for PV/T for the initial conditions: (4.50 atm)(36.0 mL)/(10.0 + 273.15 K) = 0.57213.
Remember to use absolute temperature.
For the final conditions: (3.50 atm)(85.0 mL)/T = 297.5/T
Since these must equal, 0.57213 = 297.5/T
T = 519.98 K
Subtracting 273.15 gives 246.83 degC.
let the actual height of car be x
now, according to question,
The correct reaction equation is:

Answer:
b) 1 mole of water is produced for every mole of carbon dioxide produced.
Explanation: <u>CONVERT EVERYTHING TO MOLES OR VOLUME, THEN COMPARE IT WITH THE COMPOUND'S STOICHIOMETRY IN CHEMICAL EQUATION.</u>
a) <u>22.4 L of
gas</u> is produced only when <u>
L of
</u> is reacted with 22.4 L of
. So it is wrong.
b) Since in the chemical equation the stoichiometric coefficient of
and
are same so the number of moles or volume of each of them will be same whatever the amount of reactants taken. <u>Therefore it is correct option.</u>
c)
molecules is equal 1 mole of
if produced then 3 moles of
is required, which is not given in the option. So it is wrong.
d) 54 g of water or 3 moles of
(<em>Molecular Weight of water is 18 g</em>) is produced when 3 moles of
is used but in this option only one mole of
is given. So it is wrong.
At STP, also known as standard temperature and pressure, 1 mole of a gas occupies 22.4 L. Since we are given with the volume of 6.3L, we calculate the amount of gas in mol.
n = (6.3L)/ (22.4L/mol) = 0.28125 mol
We are given with the mass of 6.7 g. Therefore, the molar mass or molecular weight of the gas is equal to,
6.7g/0.28125 mol = 23.82 g/mol
Answer:
2,019 km
Explanation:
Step 1: Given data
Distance traveled by the car (D): 1,255 mi
Step 2: Convert the distance traveled by the car to kilometers
To convert one unit into another, we use a conversion factor. In this case, the appropriate conversion factor between miles and kilometers is 1 mile = 1.609 km. The distance traveled by the car, in kilometers, is:
D = 1,255 mi × (1.609 km/1 mi) = 2,019 km