The answer is 1 1/8 hours left or 67.5 minutes!
Answer:
the rate of change in volume is dV/dt = 4π mm³/s = 12.56 mm³/s
Step-by-step explanation:
since the volume V of a cylinder is related with the height H and the radius R through:
V = πR²*H
then the change in time is given by the derivative with respect to time t
dV/dt = (∂V/∂R)*(dR/dt) + (∂V/∂H)*(dH/dt)
the change in volume with radius at constant height is
(∂V/∂R) = 2*πR*H
the change in volume with height at constant radius is
(∂V/∂H) = πR²
then
dV/dt = 2π*R*H *(dR/dt) + πR²*(dH/dt)
replacing values
dV/dt = 2π* 2 mm * 20 mm * (-0.1 mm/s) + π (2 mm) ²* 3 mm/s = 4π mm³/s
dV/dt = 4π mm³/s = 12.56 mm³/s
Check the picture below.
is not very specific above, but sounds like it's asking for an equation for the trapezoid only, mind you, there are square tiles too.
but let's do the trapezoid area then,
![\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^{ n}} \qquad \qquad \sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}\\\\ -------------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20a%5E%7B%5Cfrac%7B%7B%20n%7D%7D%7B%7B%20m%7D%7D%7D%20%5Cimplies%20%20%5Csqrt%5B%7B%20m%7D%5D%7Ba%5E%7B%20n%7D%7D%20%5Cqquad%20%5Cqquad%0A%5Csqrt%5B%7B%20m%7D%5D%7Ba%5E%7B%20n%7D%7D%5Cimplies%20a%5E%7B%5Cfrac%7B%7B%20n%7D%7D%7B%7B%20m%7D%7D%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C)
Answer:
The Value Remains the Same
Step-by-step explanation:
Trust