Metallic elements can exist on their own as individual atoms.
Nonmetals usually exist as molecules, combining with atoms of themselves.
Nonmetals can exist on their own as individual atoms.
Explanation:
Metallic elements can exist on their own as individual atoms without combining with another atom. They are stable that way. For example gold, copper, and silver.
Non-metals are usually found as molecules in combined states. The molecules are bounded to each other through covalent bonds. Examples are oxygen gas, nitrogen gas e.t.c. When the two atoms combine, they share their electrons to for homonuclear molecules.
Non-metals like the noble gases exists on their own as individual atoms. They are mono-atomic gases and are stable in nature.
learn more:
Metals and non - metals brainly.com/question/2758034
#learnwithBrainly
Answer:
The right answer is "1010 V/m".
Explanation:
The given values are:
Intensity,



Now,
The electric field's maximum value will be:
= 
On substituting the values in the above formula, we get
= 
= 
= 
Two methods of transfer of heat are involved in this process: conduction and convection.
In fact, the metal spoon is heated by conduction because the molecules of the boiling water collide with the molecules of the spoon, releasing heat to it; and also by convection, because in the pot of boiling water masses of hot water goes upward and they give their heat to the spoon, then these masses become cooler and they go down, replaced by other masses of hot water.
Answer:
80% (Eighty percent)
Explanation:
The material has a refractive index (n) of 1.25
Speed of light in a vacuum (c) is 2.99792458 x 10⁸ m/s
We can find the speed of light in the material (v) using the relationship
n = c/v, similarly
v = c/n
therefore v = 2.99792458 x 10⁸ m/s ÷ (1.25) = 239 833 966 m/s
v = 239 833 966 m/s
Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as
(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%
Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)
Answer:
At focus
Explanation:
A concave mirror is converging in nature. In a mirror, concave in nature, the rays which are parallel to the principal axis are supposed to be coming from very large distances or we assume the source to be placed at infinity for such rays which are parallel to the principal axis.
These rays, parallel to the principal axis, coming from infinity, converges at the focus of the mirror concave in nature after reflecting from the concave mirror