answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
2 years ago
6

A muon formed high in the Earth's atmosphere is measured by an observer on the Earth's surface to travel at speed V - 0.983c for

a distance of 3.53 km before it decays into an electron, a neutrino, and an antineutrino ( -e" + v + v). (a) For what time interval does the muon live as measured in its referencerame? 2.32 X Your response is within 10% of the correct value. This may be due to roundoff ett you could have a mistake th your calculation Carry out all intermediate results to at least four-digit accuracy to minimize roundoff errotus (b) How far does the Earth travel as measured in the frame of the muon?
Physics
1 answer:
Alex_Xolod [135]2 years ago
7 0

Answer:

The moun lives 2.198*10^-6 s as measured by its own frame of reference

The Earth moved 648 m as measured by the moun's frame of reference

Explanation:

From the point of view of the observer on Earth the muon traveled 3.53 km at 0.983c

0.983 * 3*10^8 = 2.949*10^8 m/s

Δt = d/v = 3530 / 2.949*10^8 = 1.197*10^-5 s

The muon lived 1.197*10^-5 s from the point of view of the observer.

The equation for time dilation is:

\Delta t' = \Delta t * \sqrt{1 - \frac{v^2}{c^2}}

Then:

\Delta t' = 1.197*10^-5 * \sqrt{1 - \frac{(0.983c)^2}{c^2}} = 2.198*10^-6 s

From the point of view of the moun Earth moved at 0.983c (2.949*10^8 m/s) during a time of 2.198*10^-6, so it moved

d = v*t = 2.949*10^8 * 2.198*10^-6 = 648 m

You might be interested in
A source charge generates an electric field of 1236 N/C at a distance of 4 m. What is the magnitude of the source charge?
guajiro [1.7K]

The correct answer to the question is-  2.2\ \mu C

CALCULATION:

As per the question, the electric field generated by the source charge is 1236  N/C at a distance of 4 m.

Hence , electric field  E =  1236 N/C.

The distance of the point R = 4m

We are asked to calculate the charge possessed by the source.

The electric field produced by a source charge of Q at a distance R is calculated as -

                    Electric field E = \frac{1}{4\pi \epsilon_{0}}\frac{Q}{R^2}

Here, \epsilon_{0} is called the absolute permittivity of the free space.

Hence, the charge of source is calculated as -

                                         Q = E\times 4\pi \epsilon_{0}\times R^2

                                            = 1236\times \frac{1}{9\times 10^9}\times (4)^2\ Coulomb

                                            = 2197.33\times 10^{-9}\ C

                                             = 2.19733\times 10^{-6}\ C

                                             = 2.2\ \mu C

Hence, the charge of source is 2.2\ \mu C

3 0
2 years ago
Read 2 more answers
A 1.5 m cylinder of radius 1.1 cm is made of a complicated mixture materials. Its resistivity depends on the distance x from the
Elis [28]

Answer:

a)R = 171μΩ

b)E = 1.7 *10^{-4} V/m

c)R_{2} = 1.16 *10^{-4}Ω

here * stand for multiplication

Explanation:

length of cylinder = 1.5 m

radius of cylinder  =  1.1 cm

resistivity depends on the distance x from the left

p(x)=a+bx^2 ............(i)

using equation

R = \frac{pl}{a}

let dR is the resistance of thickness dx

dR =\frac{p(x)dx}{a}

where p(x) is resistivity  l is length

a is area

\int\limits^R_0 {dR}  =\frac{1}{\pi r^2} \int\limits^L_0 {(a+bx^2)} \, dx  \\.........................(2)

after integration

R = \frac{[aL+\frac{bL^3}{3}] }{\pi  r^2}  ...............(3)

it is given p(0) = a = 2.25 * 10 ^{-8}Ωm

p(L) = a + b(L)^2  = 8.5 * 10 ^{-8} Ωm

8.5 * 10 ^{-8} = 2.25 * 10^{-8}+b(1.5)^2\\

(here * stand for multiplication )

on solving we get

b = 2.78* 10^{-8} Ωm

put each value of a  and b and r value in equation 3rd we get

R = \frac{[aL+\frac{bL^3}{3}] }{\pi  r^2}

R = 1.71 * 10^{-4}Ω

R = 171μΩ

FOR (b)

for mid point  x = L/2

E = p(x)L

for x = L/2

p(L/2) = a+b(L/2)^2

for given current  I = 1.75 A

so electric field

 

E = \frac{[a+b(L/2)^2]I }{\pi  r^2}

by substitute the values

we get;

E = 1.7 *10^{-4} V/m

(here * stand for multiplication )

c ).

75 cm means length will be half

 that is   x =  L/2

integrate  the second equation with upper limit  L/2  

Let resistance is R_{1}

so after integration we get

R_{1}  =  \frac{[a(L/2) +(b/3)(L^3/8)]}{\pi r^2}

substitute the value of a , b and L we get

R_{1} = 5.47 * 10 ^{-5}Ω

for second half resistance

R_{2} =  R- R_{1}

R_{2}  = 1.7 *10^{-4} -5.47 *10^{-5}

R_{2} = 1.16 *10^{-4}Ω

(here * stand for multiplication )

5 0
2 years ago
A 3.0-kg mass and a 5.0-kg mass hang vertically at the opposite ends of a very light rope that goes over an ideal pulley. If the
AleksAgata [21]

Answer:

acceleration = 2.4525‬ m/s²

Explanation:

Data: Let m1 = 3.0 Kg, m2 = 5.0 Kg, g = 9.81 m/s²

Tension in the rope = T

Sol: m2 > m1

i) for downward motion of m2:

m2 a = m2 g - T

5 a = 5 × 9.81 m/s² - T  

⇒ T = 49.05‬ m/s² - 5 a     Eqn (a)‬

ii) for upward motion of m1

m a = T - m1 g

3 a = T - 3 × 9.8 m/s²

⇒ T =  3 a + 29.43‬ m/s²   Eqn (b)

Equating Eqn (a) and(b)

49.05‬ m/s² - 5 a = T =  3 a + 29.43‬ m/s²

49.05‬ m/s² - 29.43‬ m/s² = 3 a + 5 a

19.62 m/s² = 8 a

⇒ a = 2.4525‬ m/s²

5 0
2 years ago
A block of mass m is pushed up against a spring with spring constant k until the spring has been compressed a distance x from eq
Snowcat [4.5K]

Answer:d

Explanation:

Spring is compressed to a distance of x from its equilibrium position

Work done by block on the spring is equal to change in elastic potential energy

i.e. Work done by block W=\frac{1}{2}kx^2

therefore spring will also done an equal opposite amount of work on the block in the absence of external force

Thus work done by spring on the block W=-\frac{1}{2}kx^2

Thus option d is correct

6 0
2 years ago
Describe electrons.<br> Location:<br> Charge:<br> Mass
irga5000 [103]
Protons, neutrons and electrons. Both protons and neutrons have a mass of 1 amu and are found in the nucleus. However, protons have a charge of +1, and neutrons are uncharged. Electrons have a mass of approximately 0 amu, orbit the the nucleus, and have a charge of -1.
5 0
2 years ago
Read 2 more answers
Other questions:
  • Listed following are locations and times at which different phases of the moon are visible from earth’s northern hemisphere. mat
    9·1 answer
  • Current X is 2.5 A and runs for 39 seconds. Current Y is 3.8 A and runs for 24 seconds. Which current delivered more charge, and
    15·1 answer
  • Which formulas show the relationships between momentum, mass, and velocity? Check all that apply.
    6·2 answers
  • A baseball player is running to second base at 5.03 m/s. when he is 4.80 m from the plate he goes into a slide. the coefficient
    10·2 answers
  • Calculate the average velocity in m/y of a tectonic plate that has travelled 9000 km to the south in 60 million years
    14·1 answer
  • If Pete ( mass=90.0kg) weights himself and finds that he weighs 30.0 pounds, how far away from the surface of the earth is he
    9·1 answer
  • A ball took 0.45s to hit the ground 0.72m from the table. What was the horizontal velocity of the ball as it rolled off the tabl
    8·1 answer
  • Hanging by a thread. Two metal spheres hang from nylon threads and attract each other when brought close together. (i) What can
    13·1 answer
  • A woman who weighs 500 N stands on an 8.0-m-long board that weighs 100 N. The board is supported at each end. The support force
    5·1 answer
  • A team of engineering students is testing their newly designed 200 kg raft in the pool where the diving team practices. The raft
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!