answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
2 years ago
6

A muon formed high in the Earth's atmosphere is measured by an observer on the Earth's surface to travel at speed V - 0.983c for

a distance of 3.53 km before it decays into an electron, a neutrino, and an antineutrino ( -e" + v + v). (a) For what time interval does the muon live as measured in its referencerame? 2.32 X Your response is within 10% of the correct value. This may be due to roundoff ett you could have a mistake th your calculation Carry out all intermediate results to at least four-digit accuracy to minimize roundoff errotus (b) How far does the Earth travel as measured in the frame of the muon?
Physics
1 answer:
Alex_Xolod [135]2 years ago
7 0

Answer:

The moun lives 2.198*10^-6 s as measured by its own frame of reference

The Earth moved 648 m as measured by the moun's frame of reference

Explanation:

From the point of view of the observer on Earth the muon traveled 3.53 km at 0.983c

0.983 * 3*10^8 = 2.949*10^8 m/s

Δt = d/v = 3530 / 2.949*10^8 = 1.197*10^-5 s

The muon lived 1.197*10^-5 s from the point of view of the observer.

The equation for time dilation is:

\Delta t' = \Delta t * \sqrt{1 - \frac{v^2}{c^2}}

Then:

\Delta t' = 1.197*10^-5 * \sqrt{1 - \frac{(0.983c)^2}{c^2}} = 2.198*10^-6 s

From the point of view of the moun Earth moved at 0.983c (2.949*10^8 m/s) during a time of 2.198*10^-6, so it moved

d = v*t = 2.949*10^8 * 2.198*10^-6 = 648 m

You might be interested in
Suppose 1 kg of Hydrogen is converted into Helium. a) What is the mass of the He produced? b) How much energy is released in thi
morpeh [17]

Answer:

a) m = 993 g

b) E = 6.50 × 10¹⁴ J

Explanation:

atomic mass of hydrogen = 1.00794

4 hydrogen atom will make a helium atom = 4 × 1.00794 = 4.03176

we know atomic mass of helium = 4.002602

difference in the atomic mass of helium = 4.03176-4.002602 = 0.029158

fraction of mass lost = \dfrac{0.029158}{4.03176}= 0.00723

loss of mass for 1000 g = 1000 × 0.00723 = 7.23

a) mass of helium produced = 1000-7.23 = 993 g (approx.)

b) energy released in the process

E = m c²

E = 0.00723 × (3× 10⁸)²

E = 6.50 × 10¹⁴ J

4 0
2 years ago
Read 2 more answers
If no friction acts on a diver during a dive, then which of the following statements is true? A) The total mechanical energy of
EleoNora [17]
If no frictional work is considered, then the energy of the system (the driver at all positions is conserved.

Let
position 1 = initial height of the diver (h₁), together with the initial velocity (v₁).
position 2 = final height of the diver (h₂) and the final velocity (v₂).

The initial PE = mgh₁ and the initial KE  = (1/2)mv₁²
where g = acceleration due to gravity,
m = mass of the diver.
Similarly, the final PE and KE are respectively mgh₂ and (1/2)mv₂².
PE in position 1 is converted into KE due to the loss in height from position 1 to position 2.
 
Therefore
(KE + PE) ₁ = (KE + PE)₂

Evaluate the given answers.
A) The total mechanical energy of the system increases.
     FALSE

B) Potential energy can be converted into kinetic energy but not vice versa.
     TRUE

C) (KE + PE)beginning = (KE + PE) end.
     TRUE

D) All of the above.
     FALSE

4 0
2 years ago
Read 2 more answers
Which formula is used to find fluctuation of the shape of body
Sladkaya [172]

Answer:

varn=n1+1ehvkT–1

Explanation:

This is Einstein's equation.

5 0
2 years ago
9ma electric current is flowing through a conducting wire , then the number of electron passing through it in 3 min is
Leviafan [203]

Answer:

1.0125 x 10^19

Explanation:

current flowing through conductive wire= 9mA = 9 x 10^ -3 A

charge passing per 3 min

Q = It

= 9 x 10^ -3 x (3 x 60)

= 1.620 C

no of electrons in charge

Q = ne

1.620 = n x 1.6 x 10 ^ -19

n. = 1.0125 x 10 ^19

4 0
2 years ago
Use Wien’s Law to calculate the peak wavelength of Betelgeuse, based on the temperature found in Question #8. Note: 1 nanometer
kodGreya [7K]

The peak wavelength of Betelgeuse is 828 nm

Explanation:

The relationship between surface temperature and peak wavelength of a star is given by Wien's displacement law:

\lambda=\frac{b}{T}

where

\lambda is the peak wavelength

T is the surface temperature

b=2.898\cdot 10^{-3} m\cdot K is Wien's constant

For Betelgeuse, the surface temperature is approximately

T = 3500 K

Therefore, its peak wavelength is:

\lambda=\frac{2.898\cdot 10^{-3}}{3500}=8.28\cdot 10^{-7} m = 828 nm

Learn more about wavelength:

brainly.com/question/5354733

brainly.com/question/9077368

#LearnwithBrainly

8 0
2 years ago
Other questions:
  • Dylan has two cubes of iron. The larger cube has twice the mass of the smaller cube. He measures the smaller cube. Its mass is 2
    15·2 answers
  • When an ice pack is applied to an injury, thermal energy from the injured area transfers to the ice, causing the blood vessels w
    8·2 answers
  • where again p is the phonon momentum, E is the photon energy and c is the speed of light. When you divide the photon energy foun
    6·1 answer
  • A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
    6·1 answer
  • 7. A mother pushes her 9.5 kg baby in her 5kg baby carriage over the grass with a force of 110N @ an angle
    5·1 answer
  • A sled having a certain initial speed on a horizontal surface comes to rest after traveling 10 m. If the coefficient of kinetic
    12·1 answer
  • Consider a point on a bicycle wheel as the wheel makes exactly four complete revolutions about a fixed axis. Compare the linear
    8·1 answer
  • Ocean waves are observed to travel to the right along the water surface during a developing storm. A Coast Guard weather station
    15·1 answer
  • The Orion nebula is one of the brightest diffuse nebulae in the sky (look for it in the winter, just below the three bright star
    7·1 answer
  • A student on a skateboard is moving at a speed of 1.40 m/s at the start of a 2.15 m high and 12.4 m long incline. The total mass
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!