The correct option is B.
Nuclear fission and fusion are two different types of nuclear reactions, through which energy may be obtained. Nuclear fission involves the splitting of a molecule into two different part in order to generate energy while nuclear fusion reaction involves the joining together of two elements in other to form one product. Nuclear fission generate much radioactive waste than nuclear fusion. The radioactive waste that is obtainable during nuclear fusion is less than 1% of that produce by nuclear fission.
Answer:
B will take 1.034 times the time of A from Boston to Hartford.
Explanation:
Let the distance from Boston to Hartford be S.
Person A drives at a constant speed of 55 mph for the entire trip,
Time taken by person A

Person B drives at 65 mph for half the distance and then drives 45 mph for the second half of the distance.
Time taken by person B

Ratio of time of arrival of B to A

B will take 1.034 times the time of A from Boston to Hartford.
let the length of the beam be "L"
from the diagram
AD = length of beam = L
AC = CD = AD/2 = L/2
BC = AC - AB = (L/2) - 1.10
BD = AD - AB = L - 1.10
m = mass of beam = 20 kg
m₁ = mass of child on left end = 30 kg
m₂ = mass of child on right end = 40 kg
using equilibrium of torque about B
(m₁ g) (AB) = (mg) (BC) + (m₂ g) (BD)
30 (1.10) = (20) ((L/2) - 1.10) + (40) (L - 1.10)
L = 1.98 m
Answer:
α = (ω²)/8π
Explanation:
The angular acceleration(α) of the carousel can be determined by using rotational
kinematics:
ω² =ωo² + 2αθ
Let's make α the subject of this equation ;
ω² - ωo² = 2αθ
α = (ω² −ωo²)/2θ
Now, from the question, since initially at rest, thus, ωo = 0
Also,since 2 revolutions, thus, θ = 2 x 2π = 4π since one revolution is 2π
Plugging in the relevant values to get ;
α = (ω²)/2(4π)
α = (ω²)/8π
Answer:
10.4 m/s
Explanation:
The problem can be solved by using the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
For the diver in the problem, we have:
is the initial velocity (positive because it is upward)
is the acceleration of gravity (negative because it is downward)
By substituting t = 1.7 s, we find the velocity when the diver reaches the water:

And the negative sign means that the direction is downward: so, the speed is 10.4 m/s.