Answer:
1.07 x 10⁻⁸N
Explanation:
Given parameters:
Mass 1 = 200kg
Mass 2 = 500kg
Distance of separation = 25m
Unknown:
Gravitational attraction between the two bodies = ?
Solution:
To solve this problem, we use the equation of the universal gravitation;
F =
G is the universal gravitation constant = 6.67 x 10⁻¹¹Nm²kg⁻²
r is the distance
Now insert the parameters and solve;
F =
= 1.07 x 10⁻⁸N
Answer:
A) x _electron = 0.66 10² m
, B) x _Eart = 1.13 10² m
, C) d_sphere = 1.37 10⁻² mm
Explanation:
A) Let's use a ball for the nucleus, the electron is at a farther distance the sphere for the electron must be at a distance of
Let's use proportions rule
x_ electron = 0.529 10⁻¹⁰ /1.2 10⁻¹⁵ 1.5
x _electron = 0.66 10⁵ mm = 0.66 10² m
B) the radii of the Earth and the sun are
= 6.37 10⁶ m
tex]R_{Sum}[/tex] = 6.96 10⁸ m
Distance = 1.5 10¹¹ m
x_Earth = 1.5 10¹¹ / 6.96 10⁸ 1.5
x _Eart = 1.13 10² m
C) The radius of a sphere that represents the earth, if the sphere that represents the sun is 1.5 mm, let's use another rule of proportions
d_sphere = 1.5 / 6.96 10⁸ 6.37 10⁶
d_sphere = 1.37 10⁻² mm
Answer:
292796435 seconds ≈ 300 million seconds
Explanation:
First of all, the speed of the car is 121km/h = 33.6111 m/s
The radius of the planet is given to be 7380 km = 7380000 m
From the relationship between linear velocity and angular velocity i.e., v=rw, the angular velocity of the car will be w=v/r = 33.6111/7380000 = 0.000000455 rad/s = 4.55 x 10⁻⁶ rad/sec
If the angular velocity of the vehicle about the planet's center is 9.78 times as large as the angular velocity of the planet then we have
w(vehicle) = 9.78 x w(planet)
w(planet) = w(vehicle)/9.78 = 4.55 x 10⁻⁶ / 9.78 = 4.66 x 10⁻⁷ rad/sec
To find the period of the planet's rotation; we use the equation
w(planet) = 2π÷T
Where w(planet) is the angular velocity of the planet and T is the period
From the equation T = 2π÷w = 2×(22/7) ÷ 4.66 x 10⁻⁷ = 292796435 seconds
Therefore the period of the planet's motion is 292796435 seconds which is approximately 300, 000, 000 (300 million) seconds
Complete Question:
Check the circuit in the file attached to this solution
Answer:
Total current = 0.056 A(From left to right)
Explanation:
Let the current in loop 1 be I₁ and the current in loop 2 be I₂
Applying KVL to loop 1
30 - (I₁ - I₂)500 + I₂R + 15 = 0
45 - 500I₁ - 500I₂ + RI₂ = 0
I₁ = 30mA = 0.03 A
45 - 500(0.03) - 500I₂ + RI₂ = 0
30 -500I₂ + RI₂ = 0...............(1)
Applying kvl to loop 2
-RI₂ - 15 + 10 - 400I₁ = 0
-RI₂ = 5 + 400*0.03
RI₂ = -17 ................(2)
Put equation (2) into (1)
30 -500I₂ -17 = 0
-500I₂ = 13
I₂ = -13/500
I₂ = -0.026 A
The total current in the 500 ohms resistor = I₁ - I₂ = 0.03+0.026
Total current = 0.056 A
The current will flow from left to right
Answer:
1. 579 x 10 ^-22N
Explanation:
F = kq1q2/r^2
= 9.0 x 10^9 x 5.67 x 10^-18 x 3.79 x 10^-18/ (3.5 x 10^-2)^2
= 1. 579 x 10 ^-22N