answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kamila [148]
2 years ago
6

The driver of a car slams on the brakes when he sees a tree blocking the road. The car slows uniformly with acceleration of −5.2

5 m/s2 for 4.15 s, making straight skid marks 62.5 m long, all the way to the tree. With what speed (in m/s) does the car then strike the tree? You may want to calculate the initial velocity of the car first. m/s (b) What If? If the car has the same initial velocity, and if the driver slams on the brakes at the same distance from the tree, then what would the acceleration need to be (in m/s2) so that the car narrowly avoids a collision? m/s2
Physics
2 answers:
Elan Coil [88]2 years ago
8 0

Answer:

Part a)

Final speed of the car is

v_f = 4.17 m/s

Part b)

Acceleration of the car is

a = -5.39 m/s^2

Explanation:

As we know that car makes a skid of 62.5 m

here acceleration of the car is

a = - 5.25 m/s^2

now we have

d = v_i t + \frac{1}{2}at^2

62.5 = v_i (4.15) + \frac{1}{2}(-5.25)(4.15^2)

v_i = 25.95 m/s

Part a)

Speed of the car by which it will hit the tree

v_f = v_i + at

v_f = 25.95 - (5.25)(4.15)

v_f = 4.17 m/s

Part b)

Now if car will stop after travelling same distance which same initial speed

Then we can use kinematics

v_f^2 - v_i^2 = 2 a d

0 - 25.95^2 = 2(a)(62.5)

a = -5.39 m/s^2

sergejj [24]2 years ago
3 0

Answer:

The car strikes the tree with a final speed of 4.165 m/s

The acceleration need to be of -5.19 m/seg2 to avoid collision by 0.5m

Explanation:

First we need to calculate the initial speed V_{0}

x=V_{0} *t+\frac{1}{2} *a*(t^{2} )\\62.5m=V_{0} *4.15s+\frac{1}{2} *-5.25\frac{m}{s^{2} } *(4.15^{2} )\\V_{0}=25.953\frac{m}{s}

Once we have the initial speed, we can isolate the final speed from following equation:

V_{f} =V_{0} +a*t  V_{f}= 4.165 \frac{m}{s}  

Then we can calculate the aceleration where the car stops 0.5 m before striking the tree.

To do that, we replace 62 m in the first formula, as follows:

x=V_{0} *t+\frac{1}{2} *a*(t^{2} )\\62m=25.953\frac{m}{s}*4.15s+\frac{1}{2} *-a\frac{m}{s^{2} } *(4.15^{2} )\\a=-5.19\frac{m}{s^{2} }

You might be interested in
The weight of spaceman Speff at the surface of planet X, solely due to its gravitational pull, is 389 N. If he moves to a distan
miv72 [106K]

Answer:

mass of the planet X = 5.6 × 10²³ kg.

Explanation:

According to Newtons law of universal gravitation,

F = GM₁M₂/r²

Where F = gravitational force, M₁ = mass of the speff, M₂ = mass of the planet X, G = gravitational constant r = distance between the speff and the planet X

making M₂ The subject of the equation above,

M₂ = Fr²/GM₁ .......................... equation 2

Where F = 24.31 N, r = 1.08×18⁴km ⇒( convert to m ) =1.08 × 10⁴  × 1000 m

r = 1.08  × 10⁷ m, G = 6.67  × 10 ⁻¹¹ Nm²/kg², M₁ = 75 kg

Substituting this values in equation 2,

M₂ = 24.13(1.08  × 10⁷ )²/75( 6.67  × 10 ⁻¹¹)

M₂ = 24.13 × 1.17 × 10¹⁴/500.25 × 10⁻¹¹

M₂ = (28.23 × 10¹⁴)/(500.25 × 10⁻¹¹)

M₂ = 0.056 × 10²⁵

M₂ = 5.6 × 10²³ kg.

Therefore mass of the planet X = 5.6 × 10²³ kg.

8 0
2 years ago
A 12.0 kg mass, fastened to the end of an aluminum wire with an unstretched length of 0.50 m, is whirled in a vertical circle wi
Kamila [148]

Answer:

A.)1.52cm

B.)1.18cm

Explanation:

angular speed of 120 rev/min.

cross sectional area=0.14cm²

mass=12kg

F=120±12ω²r

=120±12(120×2π/60)^2 ×0.50

=828N or 1068N

To calculate the elongation of the wire for lowest and highest point

δ=F/A

= 1068/0.5

δ=2136MPa

'E' which is the modulus of elasticity for alluminium is 70000MPa

δ=ξl=φl/E =2136×50/70000=1.52cm

δ=F/A=828/0.5

=1656MPa

δ=ξl=φl/E

=1656×50/70000=1.18cm

δ=1.18cm

6 0
2 years ago
Read 2 more answers
What is the length of the x-component of the vector plotted below?
deff fn [24]

Answer:

4

Explanation:

7 0
2 years ago
An electric eel (Electrophorus electricus) can produce a shock of up to 600 V and a current of 1 A for a duration of 2 ms, which
Irina-Kira [14]

Answer:

2\times 10^{-3}\ C

6000

1.2 J

3.33\times 10^{-6}\ F

Explanation:

I = Current = 1 A

t = Time = 2 ms

n = Number of electrocyte

V = Voltage = 100 mV

Charge is given by

Q=It\\\Rightarrow Q=1\times 2\times 10^{-3}\\\Rightarrow Q=2\times 10^{-3}\ C

The charge flowing through the electrocytes in that amount of time is 2\times 10^{-3}\ C

The maximum potential is given by

V_m=nV\\\Rightarrow n=\dfrac{V_m}{V}\\\Rightarrow n=\dfrac{600}{100\times 10^{-3}}\\\Rightarrow n=6000

The number of electrolytes is 6000

Energy is given by

E=Pt\\\Rightarrow E=V_mIt\\\Rightarrow E=600\times 1\times 2\times 10^{-3}\\\Rightarrow E=1.2\ J

The energy released when the electric eel delivers a shock is 1.2 J

Equivalent capacitance is given by

C_e=\dfrac{Q}{V_m}\\\Rightarrow C_e=\dfrac{2\times 10^{-3}}{600}\\\Rightarrow C_e=3.33\times 10^{-6}\ F

The equivalent capacitance of all the electrocyte cells in the electric eel is 3.33\times 10^{-6}\ F

8 0
2 years ago
The image shows the displacement of a motorboat. The data table shows the magnitudes of the components of each displacement vect
Diano4ka-milaya [45]
Rx= 3.5 km

Ry= 2.9 km
4 0
2 years ago
Read 2 more answers
Other questions:
  • What upward gravitational force does a 5600kg elephant exert on the earth?
    12·2 answers
  • A varying force is given by F=Ae ^-kx, where x is the position;A and I are constants that have units of N and m^-1 , respectivel
    11·1 answer
  • Seema knows the mass of a basketball. What other information is needed to find the ball’s potential energy? the volume and heigh
    12·3 answers
  • The robot arm is elevating and extending simultaneously. At a given instant, θ = 30°, ˙ θ = 10 deg / s = constant θ˙=10 deg/s=co
    6·1 answer
  • The two structural members, one of which is in tension and the other in compression, exert the indicated forces on joint O. Dete
    10·1 answer
  • The largest single publication in the world is the 1112-volume set of British Parliamentary Papers for 1968 through 1972. The co
    8·2 answers
  • The momentum of an object is determined to be 7.2 ×× 10-3 kg⋅m/skg⋅m/s. Express this quantity as provided or use any equivalent
    10·1 answer
  • A stubborn, 100 kgkg mule sits down and refuses to move. To drag the mule to the barn, the exasperated farmer ties a rope around
    13·1 answer
  • Light rays from stars bend toward smaller angles as they enter Earth's atmosphere. a. Explain why this happens using Snell's law
    8·1 answer
  • The superhero Green Lantern steps from the top of a tall building. He falls freely from rest to the ground, falling half the tot
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!