answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mandarinka [93]
2 years ago
13

A 1500 kg car traveling east at 40 km/hr turns a corner and speeds up to a velocity of 50 km/hr due north. What is the change in

the car's momentum?
Physics
1 answer:
pantera1 [17]2 years ago
5 0

Answer:

96046  Ns.

Explanation:

We shall represent velocity in vector form considering east direction as + ve x axis and north as + y direction.

40 km/h in the east

V₁ = 40 i

V₂ = 50j

momentum p₁ = mV₁

= 1500 X 40 i

= 60000 i

Momentum p₂ = mV₂

= 1500 X 50j

= 75000 j

Change in momentum

p₂ - p₁

75000j - 60000i

Magnitude of change

= \sqrt{(750000)^2 +(60000)^2

= 96046  Ns.

You might be interested in
The burning of fossil fuels contributes to the addition of greenhouse gases to the atmosphere. These gases trap thermal energy i
denpristay [2]

Answer:

B. there would be a global rise in temperatures

Hence, global warming

Explanation:

hope this helped! :D

5 0
2 years ago
Read 2 more answers
Determine the sign (+ or −) of the torque about the elbow caused by the biceps, τbiceps, the sign of the weight of the forearm,
Alex Ar [27]
Ans: 
1.  τbiceps = +(Positive)
2.  τforearm = -(Negative)
3.  τball = -(Negative)

Explanation:

The figure is attached down below.

1. T<span>orque about the elbow caused by the biceps, τbiceps:
Since Torque = r x F (where r and F are the vectors)
</span>Where r is the vector from elbow to the biceps.
<span>
We can see in the figure that F(biceps) is in upward direction, and by applying the right hand rule from r to F, we get the counterclockwise direction. The torque in counterclockwise direction is positive(+). Therefore, the sign would be +.

2. </span>Torque about the the weight of the forearm, τforearm:
Since Torque = r x F (where r and F are the vectors)
Where r is the vector from elbow to the forearm.

Also weight is the special kind of Force caused by the gravity.

We can see in the figure that W(forearm) is in downward direction, and by applying the right hand rule from r to F, we get the clockwise direction. The torque in clockwise direction is negative(-). Therefore, the sign would be -.

3. Torque about the the weight of the ball, τball:
Since Torque = r x F (where r and F are the vectors)
Where r is the vector from elbow to the ball.

Also weight is the special kind of Force caused by the gravity.

We can see in the figure that W(ball) is in downward direction, and by applying the right hand rule from r to F, we get the clockwise direction. The torque in clockwise direction is negative(-). Therefore, the sign would be -.

8 0
2 years ago
An object that weighs 2.450 N is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period o
Viktor [21]

Answer:

Spring constant, k = 24.1 N/m

Explanation:

Given that,

Weight of the object, W = 2.45 N

Time period of oscillation of simple harmonic motion, T = 0.64 s

To find,

Spring constant of the spring.

Solution,

In case of simple harmonic motion, the time period of oscillation is given by :

T=2\pi\sqrt{\dfrac{m}{k}}

m is the mass of object

m=\dfrac{W}{g}

m=\dfrac{2.45}{9.8}

m = 0.25 kg

k=\dfrac{4\pi^2m}{T^2}

k=\dfrac{4\pi^2\times 0.25}{(0.64)^2}

k = 24.09 N/m

or

k = 24.11 N/m

So, the spring constant of the spring is 24.1 N/m.

6 0
2 years ago
Point m is located a distance 2d from the midpoint between the two wires. find the magnitude of the magnetic field b1m created a
Tema [17]

Note: The diagram referred to in the question is attached here as a file.

Answer:

The magnitude of the magnetic field is B = \frac{0.071 \mu I}{d}

Explanation:

The magnetic field can be determined by the relationship:

B = \frac{\mu I}{2\pi R}...............(1)

Were I is the current flowing through the wires

The distance R from point 1 to m is calculated using the pythagora's theorem

R = \sqrt{d^{2} + (2d)^{2}  }

R = \sqrt{5d^{2} } \\R = d\sqrt{5}

Substituting R into equation (1)

B = \frac{\mu I}{2\pi d\sqrt{5} }

B = \frac{0.071 \mu I}{d}

3 0
2 years ago
Consider a string of length 1.0 meter, fixed at both ends, with mass 100 grams and tension 100 newtons. part a give the number o
Bond [772]
To answer the problem we would be using this formula which isv = sqrt(T/(m/L)) 
v = sqrt(100 N / [(0.100 kg)/(1.0 m)]) 
v = 31.62 m/s 
v = fλ 
31.62 m/s = (95 Hz)(λ) 
λ = 0.333 m 
For every wavelength along a string there will be 2 antinodes. 
1.0 m / 0.333 m = 3 
3 * 2 = 6 antinodes 
6 + 1 = 7 nodes
4 0
2 years ago
Other questions:
  • For an object starting from rest and accelerating with constant acceleration, distance traveled is proportional to the square of
    8·1 answer
  • a rod of some material 0.20 m long elongates 0.20 mm on heating from 21 to 120°c. determine the value of the linear coefficient
    10·1 answer
  • In a cyclotron, the orbital radius of protons with energy 300 keV is 16.0 cm . You are redesigning the cyclotron to be used inst
    15·2 answers
  • A box of mass M is pushed a distance Δ x across a level floor by a constant applied force F . The coefficient of kinetic frictio
    12·1 answer
  • In a particular application involving airflow over a surface, the boundary layer temperature distribution may be approximated as
    15·1 answer
  • If an irregularly shaped object (such as a wrench) is dropped from rest in a classroom and feels no air resistance, it will:
    6·1 answer
  • A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s. By changing the position of her arms, the skater decreases he
    6·1 answer
  • A person with normal vision can focus on objects as close as a few centimeters from the eye up to objects infinitely far away. T
    7·1 answer
  • Brian and Jack decided to investigate which water fountain at school has the coldest water. The two boys take measurements using
    5·1 answer
  • A coin released at rest from the top of a tower hits the ground after falling 1.5 s. What is the speed of the coin as it hits th
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!