<span>These are inert gases, so we can assume they don't react with one another. Because the two gases are also subject to all the same conditions, we can pretend there's only "one" gas, of which we have 0.458+0.713=1.171 moles total. Now we can use PV=nRT to solve for what we want.
The initial temperature and the change in temperature. You can find the initial temperature easily using PV=nRT and the information provided in the question (before Ar is added) and solving for T.
You can use PV=nRT again after Ar is added to solve for T, which will give you the final temperature. The difference between the initial and final temperatures is the change. When you're solving just be careful with the units!
SIDE NOTE: If you want to solve for change in temperature right away, you can do it in one step. Rearrange both PV=nRT equations to solve for T, then subtract the first (initial, i) from the second (final, f):
PiVi=niRTi --> Ti=(PiVi)/(niR)
PfVf=nfRTf --> Tf=(PfVf)/(nfR)
ΔT=Tf-Ti=(PfVf)/(nfR)-(PiVi)/(niR)=(V/R)(Pf/nf-Pi/ni)
In that last step I just made it easier by factoring out the V/R since V and R are the same for the initial and final conditions.</span>
Answer:

(Downwards)
(Towards Left)
Explanation:
As we know that beam is in equilibrium
So here we can use torque balance as well as force balance for the beam
Now by torque balance equation at the pivot we can say

As we know that
mg = 1.40 kN
F = 5 kN
so we will have


Now force balance in vertical direction


(Downwards)
Force balance in horizontal direction


(Towards Left)
The right answer for the question that is being asked and shown above is that: "<span>C) The clouds of dust and gases rotate at high speed > The clouds condense > The sun is born > The planets are born " This is the </span><span>diagram that best represents the steps in the formation of planets</span>
Answer:
59cm
Explanation:
angular velocity = 0.8 rad/s
linear velocity = angular velocity * radius
=0.8rad/s * 5m
= 4 m/s
wavelength = (V + U)/F
where,
V is the velocity of the wave
U is the velocity of the source
F is the frequency of the source.
wavelength = (350 m/s + 4 m/s ) / 600 Hz
Wavelength = 0.59m or 59 cm
I’ve answered this before so I know the question is missing an
important given and that given is: <span>1 has an
empty trailer and the other has a fully loaded one.
So, it would be the fully loaded trailer that would take a longer distance to
stop because a lot of weight is being pulled, and when the brakes are started,
the fully loaded trailer is more like pushing against the truck.</span>