Answer:
1) The probability that ten students in a class have different birthdays is 0.883.
2) The probability that among ten students in a class, at least two of them share a birthday is 0.002.
Step-by-step explanation:
Given : Assume there are 365 days in a year.
To find : 1) What is the probability that ten students in a class have different birthdays?
2) What is the probability that among ten students in a class, at least two of them share a birthday?
Solution :

Total outcome = 365
1) Probability that ten students in a class have different birthdays is
The first student can have the birthday on any of the 365 days, the second one only 364/365 and so on...

The probability that ten students in a class have different birthdays is 0.883.
2) The probability that among ten students in a class, at least two of them share a birthday
P(2 born on same day) = 1- P( 2 not born on same day)
![\text{P(2 born on same day) }=1-[\frac{365}{365}\times \frac{364}{365}]](https://tex.z-dn.net/?f=%5Ctext%7BP%282%20born%20on%20same%20day%29%20%7D%3D1-%5B%5Cfrac%7B365%7D%7B365%7D%5Ctimes%20%5Cfrac%7B364%7D%7B365%7D%5D)
![\text{P(2 born on same day) }=1-[\frac{364}{365}]](https://tex.z-dn.net/?f=%5Ctext%7BP%282%20born%20on%20same%20day%29%20%7D%3D1-%5B%5Cfrac%7B364%7D%7B365%7D%5D)

The probability that among ten students in a class, at least two of them share a birthday is 0.002.
Answer:
y =1/3x+20
Step-by-step explanation:
He starts 20 minutes late so we need to add 20 minutes to the time
He travels 3 times faster so he takes 1/3 of the normal time x
y =1/3x+20
F(x)=3x/2 for 0≤x≤2
<span>.....=6 - 3x/2 for 2<x≤4 </span>
<span>g(x) = -x/4 + 1 for 0≤x≤4 and g'(x)=-1/4 </span>
<span>so h(x)= f(g(x)) = (3/2)(-¼x+1)=-3x/8 + 3/2 for 0≤x≤2 </span>
<span>for x=1, h'(x)=-3/8 so h'(1)=-3/8 </span>
<span>When x=2, g(2)=1/2 so h'(2)=g'(2)f '(1/2)= -(1/4)(3/2)=-3/8 </span>
<span>When x=3, h(x)=6 - (3/2)(1 - x/4) = 9/2 +3x/8 </span>
<span>h'(x)=3/8 so h'(3) = 3/8</span>
Answer:

Step-by-step explanation:
We draw the right triangle as shown in the image attached.
Δ QRS
Where R is the right angle
Given
QR = 8
QS = 17
Now, using Pythagorean Theorem, we can find RS:

Now, we know the ratio Sine as:

Where
is the angle (here angle Q)
Opposite side is RS (which is 15)
Hypotenuse is given as QS (which is 17)
So,

This is the value of SinQ.
We don't want the angle, so we'll stop here.
Answer:
Since angle G is
✔ the largest
angle, the opposite side, JH, is
✔ the longest side
.
The order of the side lengths from longest to shortest is
✔ HJ, GH, and GJ
.
Step-by-step explanation: