answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leva [86]
2 years ago
11

A box of mass 3.1kg slides down a rough vertical wall. The gravitational force on the box is 30N . When the box reaches a speed

of 2.5m/s , you start pushing on one edge of the box at a 45° angle (use degrees in your calculations throughout this problem) with a constant force of magnitude Fp = 23N . There is now a frictional force between the box and the wall of magnitude 13N . How fast is the box sliding 2.0s after you started pushing on it?
Assuming that the angle at which you push on the edge of the box is again 45∘, with what magnitude of force Fp should you push if the box were to slide down the wall at a constant velocity? Note that, in general, the magnitude of the friction force will change if you change the magnitude of the pushing force. Thus, for this part, assume that the magnitude of the friction force is f=0.516Fp.

Physics
2 answers:
Nostrana [21]2 years ago
5 0

Answer:

Explanation:

a) The net force on the box in vertical direction:

Fnet=Fg−f−Fp  *sin45  °

 here Fg is the  gravitational force .f is the force of friction and , Fp is the pushing force.

Fnet=ma

ma=Fg−f−Fp  *sin45  °

​a=\frac{30-13-23*sin(45)}{3.1}

 =0.24 m/s²  

Vf =Vi +at

     =0.48+0.24*2

Vf=2.98 m/s

b)

                                Fnet=Fg−f−Fp  *sin45  °

                                        =Fg−0.516Fp−Fp  *sin45  °

                                        =30-1.273Fp

                                Fnet=0               (Because speed is constant)

                                Fp=30/1.273

                                      =23.56 N

stepan [7]2 years ago
5 0

Answer:

v_{f} \approx 2.1 \ m/s (after two seconds)

F_{p}  \approx 24.5 \ N (with no acceleration)

Explanation:

Givens

m=3.14 \ kg

W=30 \ N

v_{0} = 2.5  \ m/s

\theta = 45\°

F_{p}=23 \ N (constant)

F_{\mu}=13 \ N (friction)

t= 2.0 \ sec

First, we have to find the speed after 2 seconds, when its initial speed is v_{0} = 2.5  \ m/s. The acceleration can be found by using Newton's Second Law

Vertical forces:

\sum F_{y}=W-F_{p_{y} } -F_{\mu} =ma_{y}

Where F_{p_{y} }= F_{p}sin(45\°), which is deducted from the right angle formed (refer to the image attached).

Then,

W -  F_{p}sin(45\°) - F_{\mu} = m a_{y}\\ 30 \ N - (23 \ N)\frac{\sqrt{2} }{2}-13 \ N =3.14 \ kg (a_{y})

Now, we solve for  a_{y}

30-\frac{23\sqrt{2} }{2}-13=3.14  a_{y}\\ 17 - \frac{23\sqrt{2} }{2}=3.14  a_{y}\\\frac{34-23\sqrt{2}}{2}= 3.14  a_{y}\\a_{y}= \frac{34-23\sqrt{2}}{6.28} \approx 0.2 \ m/s^{2}

Then, we use the following formula to find the speed after 2 seconds

v_{f}=v_{0}-at \\ v_{f}=2.5 \ m/s - (0.2 \ m/s^{2})(2sec)=2.5- 0.4=2.1 \ m/s

Now, if the friction force is F_{\mu}=0.516 F_{p} and the box falls with constant speed, what would be the magnitude of F_{p} to happen.

In this case, the sum of vertical forces would be

\sum F_{y}=W-F_{p_{y} } -F_{\mu} =0

Where F_{p_{y} }= F_{p}sin(45\°)

Notice that the net vertical force is zero, because there's no acceleratio, the box is moving at a constant speed.

30 - F_{p}sin(45\°)-0.516 F_{p}=0

Then, we solve for F_{p}

30-0.71F_{p}-0.516 F_{p}=0\\30=1.226  F_{p}\\ F_{p}=\frac{30}{1.226}  \approx 24.5 \ N

Therefore, the force needed to have no acceleration is 24.5 N.

You might be interested in
A physics department has a Foucault pendulum, a long-period pendulum suspended from the ceiling. The pendulum has an electric ci
antoniya [11.8K]

Answer:

t=37 mins -> 2220sec

We want "T" which is the pendulum time constant

Using this equation

.5A=Ae^(-t/T)

The .5A is half the amplitude

Take ln of both sides to get ride of Ae

=ln(.5)=-2220/T

Now rearrange to = T

T=-2220/ln(.5) = 3202.78sec / 60 secs = 53.38 mins -> first part of the answer.

The second part is really easy. It took 37 mins to decay half way. meaning to decay another half of 50% which equals 25% it will take an additional 37 mins!

8 0
2 years ago
If a rock is thrown upward on the planet mars with a velocity of 14 m/s, its height (in meters) after t seconds is given by h =
crimeas [40]

<u>Answer:</u>

 Velocity of rock after 2 seconds = 6.56 m/s

<u>Explanation:</u>

 We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

Here height of rock in meters, h = 14t-1.86t^2

Comparing both the equations

    We will get initial velocity = 14 m/s(already given) and \frac{1}{2} a = -1.86

     So,  Acceleration, a = -3.72 m/s^2

 Now we have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

 When time is 2 seconds we need to find final velocity.

     v = 14 - 3.72 * 2 = 6.56 m/s.

  So, Velocity of rock after 2 seconds = 6.56 m/s  

6 0
2 years ago
La luz pasa del medio A al medio B formando un ángulo de 35° con la frontera horizontal entre ambos. Si el ángulo de refracción
zaharov [31]

Answer:

Índice de refracción entre los dos medios = 1,43

Refractive index between the two media = 1.43

Explanation:

El índice de refracción entre dos medios se explica mejor entendiendo primero la refracción.

Cuando las olas se mueven de un medio a otro, a menudo experimentan un cambio de dirección con respecto al medio en el que viajan.

Por lo tanto, el índice de refracción se expresa como el seno del ángulo de incidencia dividido por el seno del ángulo de refracción.

El seno del ángulo de incidencia y la refracción utilizados en esta fórmula de índice de refracción se miden respectivamente con respecto a la vertical.

En esta pregunta Ángulo de incidencia = 35° a la horizontal = (90° - 35°) a la vertical = 55° a la vertical.

Ángulo de refracción = 35°

Índice de refracción entre los dos medios

= (Sin 55°) ÷ (Sin 35°)

= 0.8192 ÷ 0.5736

= 1.428 = 1.43 a 2 d.p.

¡¡¡Espero que esto ayude!!!

English Translation

The light passes from medium A to medium B at an angle of 35 ° with the horizontal border between the two. If the angle of refraction is also 35 °, what is the relative refractive index between the two media?

Solution

The refractive index between two media is best explained by first understanding refraction.

When waves move from one medium to another, they often experience a change in direction with respect to the medium in which they are travelling.

Hence, refractive index is expressed as the sine of angle of incidence dibided by the sine of angle of refraction.

The sine of angle of incidence and refraction used in this refractive index formula are both respectively measured with respect to the vertical.

In this question,

Angle of incidence = 35° to the horizontal = (90° - 35°) to the vertical = 55° to the vertical.

Angle of refraction = 35°

Refractive index between the two media

= (Sin 55°) ÷ (Sin 35°)

= 0.8192 ÷ 0.5736

= 1.428 = 1.43 to 2 d.p.

Hope this Helps!!!

3 0
2 years ago
Listed following are three possible models for the long-term expansion (and possible contraction) of the universe in the absence
Lynna [10]

Answer:

1) Recollapsing universe

2) critical universe

3) Coasting universe

Explanation:

According to the smallest ration (ratio actual mass density to current density) to largest ration, rank of models for expansion of universe are

1) Recollapsing universe -in this, metric expansion of space is reverse and universe recollapses.

2) critical universe - in this, expansion of universe is very low.

3) Coasting universe -  in this, expansion of universe is steady and uniform

6 0
2 years ago
The connections of many simple pieces in the brain is evidence of the:
olga55 [171]

Brian’s Complexity Brian’s Complexity Brian’s Complexity Brian’s Complexity

6 0
2 years ago
Read 2 more answers
Other questions:
  • A scientist measures the growth of a bamboo plant over time. The table below shows the results.
    5·2 answers
  • The wavelength of red light is 650 nanometers. how much bigger is the wavelength of a water wave that measures 2 meters?
    7·2 answers
  • A book that weighs 0.35 kilograms is kept on a shelf that’s 2.0 meters above the ground. A picture frame that weighs 0.5 kilogra
    6·2 answers
  • on the surface of planet x a body with a mass of 10 kilograms weighs 40 newtons. The magnitude of the acceleration due to gravit
    10·2 answers
  • A triangular plate with base 4 m and height 5 m is submerged vertically in water so that the tip is even with the surface. Expre
    15·2 answers
  • A short current element dl⃗ = (0.500 mm)j^ carries a current of 5.40 A in the same direction as dl⃗ . Point P is located at r⃗ =
    15·1 answer
  • Two parallel plates are a distance apart with a potential difference between them. a point charge moves from the negatively char
    7·1 answer
  • An electron beam enters a crossed-field velocity selector with magnetic and electric fields of 2.0 mT and 6.0×10^3 N/C, respecti
    11·1 answer
  • The froghopper, Philaenus spumarius, holds the world record for insect jumps. When leaping at an angle of 58.0° above the horizo
    6·1 answer
  • One of the Lady Spartans was falling to the ground after
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!