The noble gas notation is the short or abbreviated form of the electron configuration.
It means that you use the symbol of the previous noble gas as part of the electron configuration of an element.
The gas noble previous to antimony is Kr, so you do not use Xe to write the electron configuration of Sb.
The gas noble previous to radium is Rn, so you do not use Xe to wirte the electron configuration of Ra.
The gas noble previous to uranium is Rn, so you do not use Xe to write the electron configuration of U.
The gas noble previous to cesium is Xe, so you use Xe to write the noble notation for Sb. This is it: Cs: [Xe] 6s.
Answer: cesium
The ga
In this question, you are given the average cofactor mass per cell (77.91pg) and the total cells count(10^5 cells). You are asked how much cofactor that will be found from those cells(microgram= 10^6 picogram). Then the calculation would be:
Cofactor mass= cofactor per cell * cell count= 77.91pg/cell * 10^5 cells= 7.791 x 10^6pg
Then convert the picogram(pg) into microgram: 7.791x 10^6pg/ (10^6pg/microgram)= 7.791 microgram
Answer:
The tools/instruments, the type of seed, the soil or planting products, the amount of germination time/days, and where the seedling is placed.
Explanation:
If anything but the temperature is changed, it can result in false results. For instance, if Tamera uses red corn for one but yellow corn for the other, it can change the germination rate. So can the type of soil, water or the amount of time each plant has to grow. If she changes thermometers or any other tool she uses, it may give her a different result than the ones she used before. And finally, if she moves the warm plant from the windowsill to her bedroom, it can mess with the results she gets from the heated sample.
Easy stoichiometry conversion :)
So, for stoichiometry, we always start with our "given". In this case, it would be the 10.0 grams of NaHCO3. This unit always goes over 1.
So, our first step would look like this:
10.0
------
1
Next, we need to cancel out grams to get to moles. To do this, we will do grams of citric acid on the BOTTOM of the next step, so it cancels out. This unit in grams will be the mass of NaHCO3, which is 84.007. Then, we will do our unit of moles on top. Since this is unknown, it will be 1.
So, our 2nd step would look like this:
1 mole CO2
-----------------
84.007g NaHCO3
When we put it together: our complete stoichiometry problem would look like this:
10.0g NaHCO3 1mol CO2
---------------------- x -------------------------
1 84.007g NaHCO3
Now to find our answer, all we need to do is:
Multiply the two top numbers together (which is 10.0)
Multiply the two bottom numbers together (Which is 84.007)
And then....
Divide the top answer by the bottom answer.
10.0/84.007 is 0.119
So, from 10.0 grams of citric acid, we have 0.119 moles of CO2.
Hope I could help!
The basis of finding the answer to this problem is to know the electronic configuration of Fluorine. That would be: <span>[He] 2s</span>²<span> 2p</span>⁵. The valence electrons, which are the outermost electrons of the atom, are the ones that participate in bonding. <em>Since the highest orbital for F is 2p, that means the highest energy occupied would be 2.</em>