Answer:
ΔH = -976.5 kJ
Explanation:
For the reaction given, there are 2 moles of benzene (C6H6). The heat of this reaction is -6278 kJ, which means that the combustion of 2 moles of benzene will lose 6278 kJ of heat. It is an exothermic reaction.
The value of ΔH, the enthalpy, is a way of measurement of the heat, and it depends on the quantity of the matter (number of moles).
So, 24.3 g of benzene has :
n = mass/ molar mass
n = 24.3/78.11
n = 0.311 moles
2 moles ------------ -6278 kJ
0.311 moles ----------- x
By a simple direct three rule:
2x = -1953.08
x = -976.5 kJ
Light acts as a wave so when you burn a certain element it generates a specific wavelength which represents a specific color light. ^-^
Given reaction represents dissociation of bromine gas to form bromine atoms
Br2(g) ↔ 2Br(g)
The enthalpy of the above reaction is given as:
ΔH = ∑n(products)Δ
- ∑n(reactants)Δ
where n = number of moles
Δ
= enthalpy of formation
ΔH = [2*ΔH(Br(g)) - ΔH(Br2(g))] = 2*111.9 - 30.9 = 192.9 kJ/mol
Thus, enthalpy of dissociation is the bond energy of Br-Br = 192.9 kJ/mol
Given:
7.20 g sample of Al2(SO4)3
Required:
Mass of oxygen
Solution:
Since you are not given a
chemical reaction, just base your solution to the chemical formula given.
Molar mass of Al2(SO4)3 = 342.15 g/mol
7.20 g Al2(SO4)3 (1 mol/342.15g)(3mol O/2 mol Al)(1 mol O2/1/2 mol
O2)(32g O2/1mol O2) = 4.04 g O2