answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreas93 [3]
2 years ago
6

If you heat a gas so that collisions are continually bumping electrons to higher energy levels, when the electrons fall back to

lower energy levels the gas produces
A) thermal radiation.
B) an absorption line spectrum.
C) an emission line spectrum.
D) X rays.
E) radio waves
Physics
1 answer:
Radda [10]2 years ago
7 0

Answer:

C) an emission line spectrum.

Explanation:

In simple terms the process happening here is that electrons are move from a state of higher energy levels to a state of lower energy levels.

Emission line spectrum are spectrum that appear when atoms or molecules return to their normal configuration from an excited state. They usually release the absorbed energy in the form of radiation.

In the question the heating of the gas is evident that the gas was put into an excited state and then it returns to its normal state

You might be interested in
7. A local sign company needs to install a new billboard. The signpost is 30 m tall, and the ladder truck is parked 24 m away fr
wolverine [178]
<h2>Solution :</h2>

Here ,

• Height of sign post = 30 m

• Distance between signpost and truck = 24 m

Let the

• Top of signpost = A

• Bottom of signpost = B

• The end of truck facing sign post be = C

Now as we can clearly imagine that the ladder will act as an hypotenuse to the Triangle ABC .

Where

• AB = Height of signpost = 30 m

• BC = distance between both = 24 m

• AC = Minimum length of ladder

→ AC² = AB² + BC² ( As we can see AB is perpendicular to BC )

→ AC² = (30)² + (24)²

→ AC² = 900 + 576

→ AC² = 1476

→ AC = 38.41875

or AC apx = 38.42

So minimum height of ladder = 38.42

6 0
2 years ago
A 30.0-kg child sits on one end of a long uniform beam having a mass of 20.0 kg, and a 40.0-kg child sits on the other end. The
qaws [65]

let the length of the beam be "L"

from the diagram

AD = length of beam = L

AC = CD = AD/2 = L/2

BC = AC - AB = (L/2) - 1.10

BD = AD - AB = L - 1.10

m = mass of beam = 20 kg

m₁ = mass of child on left end = 30 kg

m₂ = mass of child on right end = 40 kg

using equilibrium of torque about B

(m₁ g) (AB) = (mg) (BC) + (m₂ g) (BD)

30 (1.10) = (20) ((L/2) - 1.10) + (40) (L - 1.10)

L = 1.98 m

4 0
2 years ago
You are flying a hang glider at 14 mph in the northeast direction (45°). The wind is blowing at 4 mph from due north.
Afina-wow [57]

Answer:

<em>a) 17.05 mph</em>

<em>b) 54.7°  northeast direction</em>

<em>c) 10.71 mph</em>

<em>The direction is -22.58° relative to the east.</em>

<em></em>

<em>To head northeast, you must either increase your gliding speed or increase your angle relative to the x-axis greater than 45°.</em>

Explanation:

The question is a little confusing but, I guess the correct question should be;

You are flying a hang glider at 14 mph in the northeast direction (45°). The wind is blowing at 4 mph due north.

a) What is your airspeed?

b) What angle (direction) are you flying?

c) The wind increases to 14 mph from north. Now what is your airspeed and what direction are you flying? If your destination is to the northeast, how would you change your speed or direction so you might make it there?

NB: The difference in the question and my suggestion is highlighted boldly.

Your speed = 14 mph

direction is 45° northeast

Th wind speed = 4 mph

direction is north

We resolve the your speed and the wind speed into the horizontal and vertical components

For vertical the component component

V_{y} = 14(sin 45) + 4 = 9.89 + 4 = 13.89 mph

For the horizontal speed component

V_{x} = 14(cos 45) + 0 = 9.89 + 0 = 9.89 mph

Resultant speed = \sqrt{V^{2} _{y}+V^{2} _{x}  }

==> \sqrt{13.89^{2} +9.89^{2}   } = <em>17.05 mph  This is your airspeed</em>

b) To get your direction, we use

tan ∅ = V_{y} /V_{x}

tan ∅ = 13.89/9.89 = 1.413

∅ = tan^{-1}(1.413) = <em>54.7°  northeast direction</em>

c) If the wind increases to 14 mph from the north, then it means the wind blows due south. As before, only the vertical component is affected .

In this case,

V_{y} = 14(sin 45) - 14 = 9.89 - 14 = -4.11 mph

Resultant speed = \sqrt{V^{2} _{y}+V^{2} _{x}  }

==> \sqrt{4.11^{2} +9.89^{2}   } = <em>10.71 mph  This is your airspeed</em>

Your direction will be,

tan ∅ = V_{y} /V_{x}

tan ∅ = -4.11/9.89 = -0.416

∅ = tan^{-1}(-0.416) =<em> -22.58°  this is the angle you'll travel relative to the east.</em>

<em>To head northeast, you must either increase your gliding speed or increase your angle relative to the x-axis greater than 45°.</em>

5 0
2 years ago
A massive tractor rolls down a country road. in a perfectly inelastic collision, a small sports car runs into the machine from b
Helga [31]
The answer for this change in the magnitude of momentum is the same for both because momentum is always conserved so both vehicles have the identical change. 
So for determining who has the greater change in kinetic energy, momentum (P) = mv so P^2 = m^2 v^2 P^2 / 2m = 1/2 m v^2 = energy So the weightier the mass the smaller the energy change for the same momentum change so in here, the car has a greater change in kinetic energy.
5 0
2 years ago
Read 2 more answers
A man pushes his child in a grocery cart. The total mass of the cart and child is 30.0 kg. If the force resisting the carts moti
-BARSIC- [3]

The force applied by the man is 60 N

Explanation:

We can solve this problem by applying Newton's second law, which states that:

\sum F = ma (1)

where

\sum F is the net force acting on the child+cart

m is the mass of the child+cart system

a is their acceleration

In this problem, we have:

m = 30.0 kg is the mass

a=1.50 m/s^2

And there are two forces acting on the child+cart system:

  • The forward force of pushing, F
  • The force resisting the cart motion, R = 15.0 N

Therefore we can write the net force as

\sum F = F -R

where R is negative since its direction is opposite to the motion

So eq.(1) can be rewritten as

F-R=ma

And solving for F,

F=ma+R=(30.0)(1.50)+15.0=60 N

Learn more about Newton's second law:

brainly.com/question/3820012

#LearnwithBrainly

4 0
2 years ago
Other questions:
  • The total energy of a 0.050 kg object travelling at 0.70 c is
    13·1 answer
  • What do wind turbines, hydroelectric dams, and ethanol plants have in common?
    7·2 answers
  • A label for a plant is made of copper. When it is first put in a garden,it is bright and shiny. After a few months, the label ha
    8·2 answers
  • The graph indicates Linda’s walk.
    8·2 answers
  • A trooper is moving due south along the freeway at a speed of 23 m/s. at time t = 0, a red car passes the trooper. the red car m
    12·2 answers
  • A geologist is studying the shore along a river. She finds a pile of rocks at the base of a riverbank. These broken rock pieces
    14·2 answers
  • A solid cylindrical bar conducts heat at a rate of 25 W from a hot to a cold reservoir under steady state conditions. If both th
    12·1 answer
  • The connection between gravity and orbits enables astronomers to measure the __________ of stars and planets.
    5·1 answer
  • Bullets from two revolvers are fired with the same velocity. The bullet from gun #1 is twice as heavy as the bullet from gun #2.
    6·1 answer
  • Use the idea of density to explain why the dead creatures sink to the seabed​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!