answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MatroZZZ [7]
2 years ago
9

A bar 4.0m long weights 400 N. Its center of gravity is 1.5m from on end. A weight of 300N is attached at the light end. What ar

e the magnitude, direction, and point of application of the force needed to achieve transitional and rotatinal equilibruim, of the bar?

Physics
1 answer:
Debora [2.8K]2 years ago
8 0

Answer:

The resulting, needed force for equilibrium is a reaction from a support, located at 2.57 meters from the heavy end. It is vertical, possitive (upwards) and 700 N.

Explanation:

This is a horizontal bar.

For transitional equilibrium, we just need a force opposed to its weight, thus vertical and possitive (ascendent). Its magnitude is the sum of the two weights, 400+300 = 700 N, since weight, as gravity is vertical and negative.

Now, the tricky part is the point of application, which involves rotational equilibrium. But this is quite simple if we write down an equation for dynamic momentum with respect to the heavy end (not the light end where the additional weight is placed). The condition is that the sum of momenta with respect to this (any) point of the solid bar is zero:

0=\Sigma_{i}M=400\cdot1.5+300\cdot4-d\cdot700

Where momenta from weights are possitive and the opposed force creates an oppossed momentum, then a negative term. Solving our unknown d:

d=\frac{400\cdot1.5+300\cdot4}{700} =2.57 m

So, the resulting force is a reaction from a support, located at 2.57 meters from the heavy end (the one opposed to the added weight end).

You might be interested in
The free-body diagram of a crate is shown. What is the net force acting on the crate? 352 N to the left 176 N to the left 528 N
Umnica [9.8K]

As per given conditions there are two directions along which forces are acting

1. Net force along left direction is given as

F_{left} = 352N + 176 N = 528 N

2. Net force towards right direction is given as

F_{right} = 528N + 440 N = 968 N

now since the two forces here in opposite direction so here we will have net force given as

F_{net} = F_{right} - F_{left}

F_{net} = 968 - 528

F_{net} = 440 N

so here net forces must be 440 N towards right

7 0
2 years ago
Read 2 more answers
A beam of monochromatic light (f =5.09 ×1014 Hz) has a wavelength of 589 nanometers in air. What is the wavelength of this light
frosja888 [35]
Lucite has a refractive index of n=1.50. This means that the speed of the light in lucite is decreased according to:
v=\frac{c}{n}
where c=3 \cdot 10^8 m/s is the speed of light in air. Putting the number in the formula, we find that the speed of light in lucite is
v=\frac{3 \cdot 10^8 m/s}{1.50}=2\cdot 10^8 m/s
The frequency of the light is f=5.09 \cdot 10^{14}Hz, so now we can calculate the wavelength in lucite by using the formula:
\lambda=\frac{v}{f}=\frac{2\cdot 10^8 m/s}{5.09 \cdot 10^{14} Hz}=3.93 \cdot 10^{-7} m=393 nm
<span>Therefore, the correct answer is (2) 393 nm.</span>
7 0
2 years ago
Bjorn is holding a tennis ball outside a second floor window (3.5 meters from the ground) and billie jean is holding one outside
MArishka [77]
The answer is 1.01 x 10^(-11) N. I arrived to this answer through calculating the GPEs of both balls. Bjorn's ball has a GPE of 1.402 x 10^(-11) N. Billie Jean's ball has a GPE of <span>2.503 x 10^(-11) N. I subtracted the two and I found that Billie Jean's tennis ball has a GPE of 1.01 x 10^(-11) more than Bjorn's tennis ball.</span>
4 0
2 years ago
A charge of uniform volume density (40 nC/m3) fills a cube with 8.0-cm edges. What is the total electric flux through the surfac
GREYUIT [131]

Answer:

The flux through the surface of the cube is 2.314\ Nm^{2}/C

Solution:

As per the question:

Edge of the cube, a = 8.0 cm = 8.0\times 10^{- 2}\ m

Volume Charge density, \rho_{v} = 40 nC/m^{3} = 40\times {- 9}\ C/m^{3}

Now,

To calculate the electric flux:

\phi = \frac{q}{\epsilon_{o}}                                                      (1)

where

\phi = electric flux

\epsilon_{o} = 8.85\times 10^{- 12}\ F/m = permittivity of free space  

Volume Charge density for the given case is given by the formula:

\rho_{v} = \frac{Total\ charge, q}{Volume of cube, V}                  (2)

Volume of cube, V = a^{3}

Thus

V = (8.0\times 10^{- 2})^{3} = 5.12\times 10^{- 4}\ m^{3}

Thus from eqn (2), the total charge is given by:

q = \rho_{v}V = 40\times {- 9}\times 5.12\times 10^{- 4}

q = 2.048\times 10^{-11}\ F = 20.48\ pF

Now, substitute the value of 'q' in eqn (1):

\phi = \frac{2.048\times 10^{-11}}{8.85\times 10^{- 12}} = 2.314\ Nm^{2}/C

5 0
2 years ago
1. A student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag.
Snezhnost [94]

Explanation:

(a) Displacement of an object is the shortest path covered by it.

In this problem, a student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag.  She travels 0.3 km south to retrieve her item. She then travels 0.4 mi north to arrive at school.

0.4 miles = 0.64 km

displacement = 0.7-0.3+0.64 = 1.04 km

(b) Average velocity = total displacement/total time

t = 15 min = 0.25 hour

v=\dfrac{1.04\ km}{0.25\ h}\\\\v=4.16\ km/h

Hence, this is the required solution.

8 0
2 years ago
Other questions:
  • Sebuah benda dijatuhkan bebas dari ketinggian 200 m jika grafitasi setempat 10 m/s maka hitunglah kecepatan dan ketinggian benda
    7·1 answer
  • The ____ button on the rehearsal toolbar clears the slide time box and resets the timer to 0:00:00.
    14·1 answer
  • An electron starts from rest 3.00 cm from the center of a uniformly charged sphere of radius 2.00 cm. if the sphere carries a to
    11·1 answer
  • Two identical loudspeakers that are 5.00 m apart and face toward each other are driven in phase by the same oscillator at a freq
    11·1 answer
  • A torque of magnitude T = 11 kN·m is applied to the end of a tank containing compressed air under a pressure of 8 MPa. Knowing t
    6·1 answer
  • 01 – (Valor – 2,0) O maior campo de testes de veículos da América Latina, localizado na cidade de Indaiatuba (SP), tem forma cir
    15·1 answer
  • A rigid tank A of volume 0.6 m3 contains 5 kg air at 320K and the rigid tank B is 0.4 m3 with air at 600 kPa, 360 K. They are co
    9·1 answer
  • when you drop a pebble from height h, it reaches the ground with kinetic energy k if there is no air resistance. from what heigh
    11·1 answer
  • On the image at right, the two magnets are the same. Which paper clip would be harder to remove?
    13·1 answer
  • Which of these has the most kinetic energy
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!