0.17 M is the is the molal concentration of this solution
Explanation:
Data given:
freezing point of glucose solution = -0.325 degree celsius
molal concentration of the solution =?
solution is of glucose=?
atomic mass of glucose = 180.01 grams/mole
freezing point of glucose = 146 degrees
freezing point of water = 0 degrees
Kf of glucose = 1.86 °C
ΔT = (freezing point of solvent) - (freezing point of solution)
ΔT = 0.325 degree celsius
molality =?
ΔT = Kfm
rearranging the equation:
m = 
m= 0.17 M
molal concentration of the glucose solution is 0.17 M
Answer:
it will not be soluble in water Becoz it can only be
separated by passing it through silver nitrate solution
Explanation:
i hope you understand
Answer:
<h3>

</h3>
Explanation:
First balance the chemical equation:
⇄ 
two components are solid so these two will not exert any kind of pressure in the container so at equilibrium only CO2 will apply pressure on the container
Therefore only partial pressure of CO2 will be taken for the calculation of equilibrium pressure constant i.e. Kp
![K_p=[CO_2]](https://tex.z-dn.net/?f=K_p%3D%5BCO_2%5D)
![[CO_2]=p](https://tex.z-dn.net/?f=%5BCO_2%5D%3Dp)



Explanation: Electron dot structures are the lewis dot structures which represent the number of valence electrons around an atom in a molecule.
The electronic configuration of potassium is ![[Ar]4s^1](https://tex.z-dn.net/?f=%5BAr%5D4s%5E1)
Valence electrons of potassium are 1.
The electronic configuration of Bromine is ![[Ar]4s^24p^5](https://tex.z-dn.net/?f=%5BAr%5D4s%5E24p%5E5)
Valence electrons of bromine are 7.
These two elements form ionic compound.
Ionic compound is defined as the compound which is formed from the complete transfer of electrons from one element to another element.
Here, one electron is released by potassium which is accepted by bromine element. In this process, Potassium becomes cation having +1 charge and Bromine become anion having (-1) charge.
The ionic equation follows:

The electron dot structure is provided in the image below.