Answer:
acceleration = 2.4525 m/s²
Explanation:
Data: Let m1 = 3.0 Kg, m2 = 5.0 Kg, g = 9.81 m/s²
Tension in the rope = T
Sol: m2 > m1
i) for downward motion of m2:
m2 a = m2 g - T
5 a = 5 × 9.81 m/s² - T
⇒ T = 49.05 m/s² - 5 a Eqn (a)
ii) for upward motion of m1
m a = T - m1 g
3 a = T - 3 × 9.8 m/s²
⇒ T = 3 a + 29.43 m/s² Eqn (b)
Equating Eqn (a) and(b)
49.05 m/s² - 5 a = T = 3 a + 29.43 m/s²
49.05 m/s² - 29.43 m/s² = 3 a + 5 a
19.62 m/s² = 8 a
⇒ a = 2.4525 m/s²
Answer:
Er = 108 [J]
Explanation:
To solve this problem we must understand that the total energy is 200 [J]. Of this energy 44 [J] are lost in sound and 48 [J] are lost in heat. In such a way that these energy values must be subtracted from the total of the kinetic energy.
200 - 44 - 48 = Er
Where:
Er = remaining energy [J]
Er = 108 [J]
Answer:
160 Hz , 240 Hz , 400 Hz
Explanation:
Given that
Frequency of forth harmonic is 320 Hz.
Lets take fundamental frequency = f₁

f₁=80 Hz
Frequency of first harmonic = f₂
f₂=2 f₁
f₂ =2 x 80 = 160 Hz
Frequency of second harmonic = f₃
f₃= 3 f₁=3 x 80 = 240 Hz
Frequency of fifth harmonic = f₅
f₅= 5 f₁= 5 x 80 = 400 Hz
Three frequencies are as follows
160 Hz , 240 Hz , 400 Hz
Answer:
When an object changes speed (increases/decreases) it results in acceleration/de acceleration, its velocity also changes.
Explanation:
Acceleration is the rate of change in velocity.An object can accelerate when speed increases, decreases or direction changes. All these instances involves a change in velocity.Velocity is a vector quantity thus it has magnitude and the direction.Acceleration due to change in direction is centripetal acceleration.The expression for finding acceleration is;
a=change in velocity/change in time
a=Δv/Δt in m/s²
Answer:
Δx=(v+v0/2)t
Explanation:
We can figure out which kinematic formula to use by choosing the formula that includes the known variables, plus the target unknown.
In this problem, the target unknown is the initial velocity v_0v
0
v, start subscript, 0, end subscript of the roller coaster.