The magnitude of the force<span> a 1.5 x 10-3 C charge exerts on a 3.2 x 10-4 C charge located 1.5 m away is 1920 Newtons. The formula used to solve this problem is:
F = kq1q2/r^2
where:
F = Electric force, Newtons
k = Coulomb's constant, 9x10^9 Nm^2/C^2
q1 = point charge 1, C
q2 = point charge 2, C
r = distance between charges, meters
Using direct substitution, the force F is determined to be 1920 Newtons.</span>
Answer:
The formula to calculate velocity in this case:
v = v0 + at
=> a = (v - v0)/t
= (50 - 0)/4
= 50/4 = 12.5 (m/s2)
Hope this helps!
:)
Answer:
A = 2.36m/s
B = 3.71m/s²
C = 29.61m/s2
Explanation:
First, we convert the diameter of the ride from ft to m
10ft = 3m
Speed of the rider is the
v = circumference of the circle divided by time of rotation
v = [2π(D/2)]/T
v = [2π(3/2)]/4
v = 3π/4
v = 2.36m/s
Radial acceleration can also be found as a = v²/r
Where v = speed of the rider
r = radius of the ride
a = 2.36²/1.5
a = 3.71m/s²
If the time of revolution is halved, then radial acceleration is
A = 4π²R/T²
A = (4 * π² * 3)/2²
A = 118.44/4
A = 29.61m/s²
Answer:
Water flowing rate= (300000kg/s) = (300000l/s)
Explanation:
First with the section of the channel, the depth of the water and the speed of the fluid we can determine the volume of fluid that circulates per second through the channel:
Volume per time= 15m × 8m × (2.5m/s)= 300 m³/s
With this volume of circulating fluid per second elapsed, we multiply it by the density of the water to determine the kilograms or liters of water that circulate through the channel per second elapsed:
Water flowing rate= (300m³/s) × (1000kg/m³)= (300000kg/s) = (300000l/s)
Taking into account that 1kg of water is approximately equal to 1 liter of water.
The prime factors that affect the ability of substances to transfer the thermal energy to heat are the temperature difference between the two objects, area of cross-section, time, and distance travelled by the thermal energy.
<u>Explanation:
</u>
The process of heat conduction takes place through contact between two or more objects. But this conduction depends on multiple factors that are responsible for thermal conduction. They are-
- Temperature Difference(
) - The two objects must have a temperature difference else there will be no thermal conduction between them. The more the difference in their temperatures, the more thermal energy flows from one object to the other.
- Area of Cross-section (A) - Larger areas of contact provide as better medium of thermal conduction.
- Time (t) - The more time we give for the thermal conduction, the more energy is transmitted from one system to the other.
- Distance Travelled (l) - The longer the distance, lesser the conduction. Means, the distance should be minimized in order to achieve the optimum thermal conduction between two objects.
Consider metal pot and its handle, it is being boiled for 15 m. The molecules present near the source of heat, showing fast vibration and bounce off. It actually indicates the heats of substance. That’s why, handle remains hot as heat conduction takes place. It can be estimated by,

k - Thermal conductivity of the material, measured in J/s.m.