The specific heat capacity of brass would be ranked between 0 and infinity
Answer:
The magnitude of buoyancy force is equal to that of ball's weight.
Explanation:
Ball 1 is floating on water. Weight of ball 1 is Fg=m1g is acting vertically downward
Force of buoyancy FB = ρVdisg is acting vertically upward.
Net force acting on the ball is zero, FB=Fg
Answer
The magnitude of buoyancy force is equal to that of ball's weight.
Answer:
Time taken by the leaf to displace by 1.0 m distance is
seconds
Explanation:
As we know that initial velocity of the leaf is given as

now the acceleration upwards for the leaf is

The displacement of leaf in upward direction is
d = 1 m
so now we have


seconds
Answer:

Explanation:
Considering the thermal conductivity of aluminium and brass as
and
respectively
The temperature at the end of aluminium and brass are given as
and
respectively with length of rod L=1.3 m , Length of aluminium
, length of brass
and letting temperature at steady state be T
At steady state, thermal conductivity of both aluminium and brass are same hence


Upon re-arranging




Therefore, the temperatures at which the metals are joined is 
Answer:
Kinetic energy is given by:
K.E. = 0.5 m v²
Susan has mass, m = 25 kg
Velocity with which Susan moves is, v = 10 m/s
Hannah has mass, m' = 30 kg
Velocity with which Hannah moves is, v' = 8.5 m/s
<u>Kinetic energy of Susan:</u>
0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J
<u>Kinetic energy of Hannah:</u>
0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J
Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.
Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.