24 minus 8 is 16
5 times 60 is 300
300 times 16 is 4800.
She winks 4800 times a day
Answer:
2.12×10²³ atoms.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ atoms. This simply means that 1 mole of zirconium also 6.02×10²³ atoms.
Thus, we can obtain the number of atoms present in 0.3521 mole of zirconium as follow:
1 mole of zirconium also 6.02×10²³ atoms.
Therefore, 0.3521 mole of zirconium will contain = 0.3521 × 6.02×10²³ = 2.12×10²³ atoms.
Therefore, 0.3521 mole of zirconium contains 2.12×10²³ atoms.
Answer:
As the garter snake can be found almost in any kind of habitat, what makes them be able to survive in any environment include:
1. They hibernate to increase their chances of survival in unfavorable weather conditions.
2. They can blend with the background of any environment especially grass to escape being eaten.
3. They produce an odor that is usually unpleasant especially when about to be attacked.
Explanation:
The garter snakes are distinguished by the three stripes running the length of their body and can often be found in forests, places that are even close to water bodies, and almost any place, even in holes.
2 Ionic bonds form between metal atoms and nonmetal atoms.
4 The less electronegative atoms transfers one or more electrons to the more electronegative atom.
5 The metal atom forms a cation and the nonmetal atom forms an anion.
7 The attraction between ions with an opposite charge forms an ionic bond.
Answer:
See explanation below for answers
Explanation:
We know that the balance is tared, so the innitial weight would be zero. Now, let's answer this by parts.
a) mass of displaced water.
In this case all we need to do is to substract the 0.70 with the 0.13 g. so:
mW = 0.70 - 0.13
mW = 0.57 g of water
b) Volume of water.
In this case, we have the density of water, so we use the formula for density and solve for volume:
d = m/V
V = m/d
Replacing:
Vw = 0.57/0.9982
Vw = 0.5710 mL of water
c) volume of the metal weight
In this case the volume would be the volume displaced of water, which would be 0.5710 mL
d) the mass of the metal weight.
In this case, it would be the mass when the metal weight hits the bottom which is 0.70 g
e) density.
using the above formula of density we calculate the density of the metal
d = 0.70 / 0.5710
d = 1.2259 g/mL