answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadya68 [22]
2 years ago
9

A cylindrical rod of copper (E = 110 GPa, 16 × 106 psi) having a yield strength of 240 MPa (35,000 psi) is to be subjected to a

load of 6640 N (1493 lbf). If the length of the rod is 370 mm (14.57 in.), what must be the diameter to allow an elongation of 0.53 mm (0.02087 in.)?
Physics
2 answers:
Ksenya-84 [330]2 years ago
5 0

Answer:

d=7.32\ mm

Explanation:

Given:

  • Young's modulus, E=110\times 10^3\ MPa
  • yield strength, \sigma_y=240\ MPa
  • load applied, F=6640\ N
  • initial length of rod, l=370\ mm
  • elongation allowed, \Delta l=0.53

We know,

Stress:

\sigma=\frac{F}{A}

where: A = cross sectional area

Strain:

\epsilon = \frac{\Delta l}{l}

& by <u>Hooke's Law within the elastic limits:</u>

E=\frac{\sigma}{\epsilon}

\therefore 110\times 10^3=\frac{F}{A}\div \frac{\Delta l}{l}

\therefore 110\times 10^3=\frac{6640\times 4}{\pi.d^2}\div \frac{0.53}{370}

where: d = diameter of the copper rod

d=7.32\ mm

Fynjy0 [20]2 years ago
4 0

Answer:

d= 7.32 mm

Explanation:

Given that

E= 110 GPa

σ = 240 MPa

P= 6640 N

L= 370 mm

ΔL = 0.53

Area A= πr²

We know that  elongation due to load given as

\Delta L=\dfrac{PL}{AE}

A=\dfrac{PL}{\Delta LE}

A=\dfrac{6640\times 370}{0.53\times 110\times 10^3}

A= 42.14 mm²

πr² = 42.14 mm²

r=3.66 mm

diameter ,d= 2r

d= 7.32 mm

You might be interested in
Un tubo de acero de 40000 kilómetros forma un anillo que se ajusta bien a la circunferencia de la tierra. Imagine que las person
Darina [25.2K]

Answer:

82.76m

Explanation:

In order to find the distance of the steel ring to the ground, when its temperature has raised by 1°C, you first calculate the radius of the steel tube before its temperature increases.

You use the formula for the circumference of the steel ring:

C=2\pi r    (1)

C: circumference of the ring = 40000 km = 4*10^7m (you assume the circumference is the length of the steel tube)

you solve for r in the equation (1):

r=\frac{C}{2\pi}=\frac{4*10^7m}{2\pi}=6,366,197.724m

Next, you use the following formula to calculate the change in the length of the tube, when its temperature increases by 1°C:

L=Lo[1+\alpha \Delta T]         (2)

L: final length of the tube = ?

Lo: initial length of the tube = 4*10^7m

ΔT = change in the temperature of the steel tube = 1°C

α: thermal coefficient expansion of steel = 13*10^-6 /°C

You replace the values of the parameters in the equation (2):

L=(4*10^7m)(1+(13*10^{-6}/ \°C)(1\°C))=40,000,520m

With the new length of the tube, you can calculate the radius of a ring formed with the tube. You again solve the equation (1) for r:

r'=\frac{C}{2\pi}=\frac{40,000,520m}{2\pi}=6,366,280.484m

Finally, you compare both r and r' radius:

r' - r = 6,366,280.484m - 6,366,197.724m = 82.76m

Hence, the distance to the ring from the ground is 82.76m

4 0
2 years ago
A particle of mass m= 2.5 kg has velocity of v = 2 i m/s, when it is at the origin (0,0). Determine the z- component of the angu
melomori [17]

Answer:

please read the answer below

Explanation:

The angular momentum is given by

|\vec{L}|=|\vec{r}\ X \ \vec{p}|=m(rvsin\theta)

By taking into account the angles between the vectors r and v in each case we obtain:

a)

v=(2,0)

r=(0,1)

angle = 90°

L=(2.5kg)(1)(2\frac{m}{s})sin90\°=5.0kg\frac{m}{s}

b)

r=(0,-1)

angle = 90°

L=(2.5kg)(1)(2\frac{m}{s})sin90\°=5.0kg\frac{m}{s}

c)

r=(1,0)

angle = 0°

r and v are parallel

L = 0kgm/s

d)

r=(-1,0)

angle = 180°

r and v are parallel

L = 0kgm/s

e)

r=(1,1)

angle = 45°

L = (2.5kg)(2\frac{m}{s})(\sqrt{2})sin45\°=5kg\frac{m}{s}

f)

r=(-1,1)

angle = 45°

the same as e):

L = 5kgm/s

g)

r=(-1,-1)

angle = 135°

L=(2.5kg)(2\frac{m}{s})(\sqrt{2})sin135\°=5kg\frac{m}{s}

h)

r=(1,-1)

angle = 135°

the same as g):

L = 5kgm/s

hope this helps!!

4 0
2 years ago
A ship 1200m off shore fires a gun. how long after the gun is fired will it be heard on the shore?​
ryzh [129]

Answer:

We know that the speed of sound is 343 m/s in air

we are also given the distance of the boat from the shore

From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion

s = ut + 1/2 at²

since the acceleration of sound is 0:

s = ut + 1/2 (0)t²

s = ut    <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>

Replacing the variables in the equation with the values we know

1200 = 343 * t

t = 1200 / 343

t = 3.5 seconds (approx)

Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired

6 0
2 years ago
A circular loop of wire with a radius of 12.0 cm and oriented in the horizontal xy-plane is located in a region of uniform magne
Ulleksa [173]

(a) 34 V

The average emf induced in the loop is given by Faraday-Newmann-Lenz law:

\epsilon = -\frac{\Delta \Phi_B}{\Delta t} (1)

where

\Delta \Phi_B is the variation of magnetic flux through the coil

\Delta t = 2.0 ms = 0.002 s is the time interval

We need to find the magnetic flux before and after. The magnetic flux is given by:

\Phi_B = BA

where

B is the magnetic field intensity

A is the area of the coil

The radius of the coil is r = 12.0 cm = 0.12 m, so its area is

A=\pi r^2 = \pi (0.12 m)^2 = 0.045 m^2

At the beginning, the magnetic field is

B_i = 1.5 T

so the flux is

\Phi_i = B_i A = (1.5 T)(0.045 m^2)=0.068 Wb

while after the removal of the coil, the magnetic field is zero, so the flux is also zero:

\Phi_f = 0

so the variation of magnetic flux is

\Delta \Phi = 0-0.068 Wb=-0.068 Wb

And substituting into (1) we find the average emf in the coil

\epsilon=-\frac{-0.068 Wb}{0.002 s}=34 V

(b) Counterclockwise

In order to understand the direction of the induced current, we have to keep in mind the negative sign in Lenz's law (1), which tells that the direction of the induced current must be such that the magnetic field produced by this current opposes the variation of magnetic flux in the coil.

In this situation, the magnetic flux through the coil is decreasing, since the coil is removed from the field. So, the induced current must be such that it produces a magnetic field whose direction is the same as the direction of the external magnetic field, which is upward along the positive z-direction.

Looking down from above and using the right-hand rule on the loop (thumb: direction of the current, other fingers wrapped: direction of magnetic field), we see that in order to produce at the center of the coil a magnetic field which is along positive z-direction, the induced current must be counterclockwise.

4 0
2 years ago
A Porsche challenges a Honda to a 200-m race.Because the Porsche's acceleration of 3.5 m/s2 is larger than the Honda's 3.0 m/s2,
Blizzard [7]

Answer:

Honda won by 0.14 s

Explanation:

We are given that

Distance =S=200 m

Initial velocity of Honda=u=0m/s

Initial velocity of Porsche=u'=0m/s

Acceleration of Honda=3.0m/s^2

Acceleration of Porsche's=3.5m/s^2

Time taken by Honda  to start=1 s

s=ut+\frac{1}{2}at^2

Substitute the values

200=0(t)+\frac{1}{2}(3)t^2

200=\frac{3}{2}t^2

t^2=\frac{200\times 2}{3}=\frac{400}{3}

t=\sqrt{\frac{400}{3}}=11.55s

Time taken by Honda=11.55 s

Now, time taken by  Porsche

200=\frac{1}{2}(3.5)t^2

t^2=\frac{200\times 2}{3.5}

t=\sqrt{\frac{400}{3.5}}=10.69 s

Total time taken by Porsche=10.69+1=11.69 s

Because it start 1 s late

Time taken by Honda is less than Porsche .Therefore, Honda won and

Time =11.69-11.55=0.14 s

Honda won by 0.14 s

3 0
2 years ago
Other questions:
  • Why do charges build up on clothing in an electric dryer?
    7·2 answers
  • You have a pumpkin of mass m and radius r. the pumpkin has the shape of a sphere, but it is not uniform inside so you do not kno
    8·1 answer
  • The acceleration of an object as a function of time is given by a(t) = (1.00 m/s2)t2. If displacement of the object between time
    7·1 answer
  • An electric field of 4.0 μV/m is induced at a point 2.0 cm from the axis of a long solenoid (radius = 3.0 cm, 800 turns/m). At w
    9·1 answer
  • A disk rotates around an axis through its center that is perpendicular to the plane of the disk. The disk has a line drawn on it
    9·1 answer
  • Technician A says that some ABS wheel speed sensors are used as part of the tire pressure monitoring system (TPMS) . Technician
    13·2 answers
  • A uniform beam XY is 100 cm long and weighs 4.0N.The beam rests on a pivot 60 cm from end X. A load of 8.0 N hangs from the beam
    8·1 answer
  • A car rolls down a ramp in a parking garage. The horizontal position of the car in meters over time is shown below. Graph of ver
    11·1 answer
  • The energy stored in a wooden log transforms when the log is burned. Which of the following explanations BEST describes how the
    13·1 answer
  • A 0.242 g sample of potassium is heated in oxygen. The result is 0.292 g of a crystalline compound. What is the formula of this
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!