Given :
Thin hoop with a mass of 5.0 kg rotates about a perpendicular axis through its center.
A force F is exerted tangentially to the hoop. If the hoop’s radius is 2.0 m and it is rotating with an angular acceleration of 2.5 rad/s².
To Find :
The magnitude of F.
Solution :
Torque on hoop is given by :
( Moment of Inertia of hoop is MR² )
Putting value of M, R and α in above equation, we get :

Therefore, the magnitude of force F is 25 N.
Hence, this is the required solution.
Answer:
Explanation:
The answer is electric field intensity. Electric field intensity is the force per unit positive charge which the charge exerts at any point.
Answer:
time required after impact for a puck is 2.18 seconds
Explanation:
given data
mass = 30 g = 0.03 kg
diameter = 100 mm = 0.1 m
thick = 0.1 mm = 1 ×
m
dynamic viscosity = 1.75 ×
Ns/m²
air temperature = 15°C
to find out
time required after impact for a puck to lose 10%
solution
we know velocity varies here 0 to v
we consider here initial velocity = v
so final velocity = 0.9v
so change in velocity is du = v
and clearance dy = h
and shear stress acting on surface is here express as
= µ 
so
= µ
............1
put here value
= 1.75×
× 
= 0.175 v
and
area between air and puck is given by
Area =
area =
area = 7.85 ×
m²
so
force on puck is express as
Force = × area
force = 0.175 v × 7.85 × 
force = 1.374 ×
v
and now apply newton second law
force = mass × acceleration
- force = 
- 1.374 ×
v = 
t = 
time = 2.18
so time required after impact for a puck is 2.18 seconds
Hello <span>Andijwiltbank
</span>
Question: <span>Often what one expects to see influences what is perceived in the surrounding environment. True or False?
Answer: True
Reason: What we observe about the environment decides what we believe about it and how we react.
Hope This Helps :-)
-Chris</span>
Answer:
The pressure at this point is 0.875 mPa
Explanation:
Given that,
Flow energy = 124 L/min
Boundary to system P= 108.5 kJ/min

We need to calculate the pressure at this point
Using formula of pressure


Here, 
Where, v = velocity
Put the value into the formula




Hence, The pressure at this point is 0.875 mPa