answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna11 [192]
2 years ago
13

You launch a water balloon from the ground with a speed of 8.3 m/s at an angle of 27°. a. What is the horizontal component of th

e velocity? (1 point) b. What is the vertical component of the velocity? (1 point) c. How long does it take the water balloon to reach its highest point? (1 point) d. What is the maximum height of the water balloon? (1 point) e. What is the total amount of time that the water balloon is in the air? (1 point) f. How far does the water balloon land from where you launched it? (1 point)
Physics
1 answer:
solmaris [256]2 years ago
7 0

a) The horizontal component of the velocity is 7.4 m/s

b) The vertical component of the velocity is 3.8 m/s

c) The balloon reaches the highest point after 0.39 s

d) The maximum height is 0.74 m

e) The total time of flight is 0.78 s

f) The range of the balloon is 5.77 m

Explanation:

a)

The motion of the balloon is the motion of a projectile, which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction

The horizontal component of the velocity (which is constant) is given by

v_x = u cos \theta

where

u = 8.3 m/s is the initial velocity of the balloon

\theta=27^{\circ} is the angle of projection

Substituting,

v_x = (8.3)(cos 27^{\circ})=7.4 m/s

b)

The vertical component of the initial velocity of a projectile is given by

u_y = u sin \theta

where

u is the initial velocity

\theta is the angle of projection

Here we have

u = 8.3 m/s

\theta=27^{\circ}

Substituting,

u_y = (8.3)(sin 27^{\circ})=3.8 m/s

c)

The vertical component of the velocity of the balloon follows the suvat equation

v_y = u_y - gt

where

v_y is the vertical velocity at time t

u_y = 3.8 m/s is the initial vertical velocity

g=9.8 m/s^2 is the acceleration of gravity

The balloon reaches the maximum height when the vertical velocity becomes zero:

v_y = 0

So we get:

0=u_y -gt\\t=\frac{u_y}{g}=\frac{3.8}{9.8}=0.39 s

d)

The maximum height of the balloon can be calculated using the suvat equation:

s=u_y t - \frac{1}{2}gt^2

where

u_y = 3.8 m/s is the initial vertical velocity

g=9.8 m/s^2 is the acceleration of gravity

t = 0.39 s is the time at which the highest point is reached

Substituting,

s=(3.8)(0.39)-\frac{1}{2}(9.8)(0.39)^2=0.74 m

e)

The total time of flight of a projectile is twice the time needed to reach the maximum height, and it is given by

t=\frac{2u_y}{g}

where

u_y is the initial vertical velocity

g is the acceleration of gravity

Here we have

u_y = 3.8 m/s

g=9.8 m/s^2

Substituting,

t=\frac{2(3.8)}{9.8}=0.78 s

f)

The range of a projectile is the horizontal distance covered by the projectile, so it can be found by multiplying its horizontal velocity (which is constant) by the time of flight:

d=v_x t

where

v_x is the horizontal velocity

t is the time of flight

Here we have

v_x = 7.4 m/s

t = 0.78 s

Substituting,

d=(7.4)(0.78)=5.77 m

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

You might be interested in
How much power does it take to lift a 24 kg gift box 6m above the floor in 4 s?
Mrac [35]

Answer:

<h2>5.6kW</h2>

Explanation:

Step one:

given

mass m= 24kg

distance moved= 6m

time taken= 4seconds

Step two:

Required

power

but work done is the force applied at a distance, and the power is the work done time the time taken

Work done= F*D

F=mg

W= mg*D

W=24*9.81*6

W=1412.6J

Power P= work * time

P=1412.6*4

p=5650.5W

P=5.6kW

3 0
2 years ago
A 0.200 kg plastic ball moves with a velocity of 0.30 m/s. It collides with a second plastic ball of mass 0.100 kg, which is mov
zzz [600]

Answer:

0.22m/s

Explanation:

The total momentum of the System is conserved. Total momentum of the system before the collision is equal to the total momentum of the system after collision. The total momentum is the sum of individual momentum of all the objects in that system.

momentum of an object = mass* velocity

Total Momentum before collision = 0.2*0.3 + 0.1*0.1= 0.07 kg⋅m/s;

Total momentum after collision = 0.1*0.26 + 0.2*x = 0.07;

Solve for x.

4 0
2 years ago
For the Texas Department of Public Safety, you are investigating an accident that occurred early on a foggy morning in a remote
Bad White [126]

Answer:

JRJJEJERJRJERERJREREJERJJERJERTJE

ExpJERlanation:

SDSHERHJRESHERDHEDGERJEJERJERJERRJERSH

5 0
2 years ago
Three positively charged particles are positioned as in the diagram below. The charges on the y-axis are 40. cm apart. Determine
tatiyna

Answer:

Explanation:

kkkkkkkkkkk

6 0
2 years ago
What is the change in internal energy (in J) of a system that does 4.50 ✕ 105 J of work while 3.20 ✕ 106 J of heat transfer occu
Dmitrij [34]

Answer:

-3.25\times 10^6 J

Explanation:

We are given that

Work done by the system=4.5\times 10^5 J

Heat transfer into the system=U_1=3.2\times 10^6 J

Heat transfer to the environment=U_2=6\times 10^6 J

We have to find the change in internal energy

By first law of thermodynamics

\Delta Q=\Delta U+w

\Delta Q=U_1-U_2=3.2\times 10^6-6\times 10^6=-2.8\times 10^6J

Substitute the values then we get

-2.8\times 10^6=\Delta U+4.5\times 10^5

\Delta U=-2.8\times 10^6-4.5\times 10^5=-28\times 10^5-4.5\times 10^5=-32.5\times 10^5=-3.25\times 10^6 J

Hence, the change in internal energy =-3.25\times 10^6 J

7 0
2 years ago
Other questions:
  • You are playing a game called "Will It Float?" In this game, you are given a large, square can of tuna. If you know the density
    5·2 answers
  • Tony uses the device shown in the diagram to model how an electromagnet is used in his uncle’s scrap metal yard. After picking u
    14·2 answers
  • A person driving a car applies the brakes. This produces friction, which stops the car. Into which type of energy is the mechani
    8·2 answers
  • Assume your eye has an aperture diameter of 3.00 mm at night when bright headlights are pointed at it. 1) At what distance can y
    13·2 answers
  • A plastic cube with a coin taped to its top surface is floating partially submerged in water. A student marks the level of the w
    8·1 answer
  • 3. A 75kg man sits at one end of a uniform seesaw pivoted at its center, and his 24kg son sits at the
    11·1 answer
  • In an attempt to impress its friends, an acrobatic beetle runs and jumps off the bottom step of a flight of stairs. The step is
    10·1 answer
  • Albert presses a book against a wall with his hand. As Albert gets tired, he exerts less force, but the book remains in the same
    6·1 answer
  • Dźwig podniósł kontener o masie m = 80 kg na wysokość h = 10 m. Pierwsze 5 m kontener przebył z przy-
    10·1 answer
  • With countercurrent flow, diffusion happened in all regions of the filter. Explain why
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!