Answer:
<em>The athlete will rise 1.10 meters off the ground</em>
Explanation:
<u>Vertical Motion</u>
If an object is launched vertically upwards at an initial speed vo, then it will reach a maximum height given by

The athlete can exert a net force upwards equal to twice his weight. It makes him accelerate upwards at

The speed at the end of his push can be computed by

Replacing the value of a obtained above:

where y is the length of this crouch


This is the initial speed of this vertical launch, thus


Answer:
Magnitude of the force is 2.135N and the direction is 41.8° below negative y-axis
Explanation:
The stiff wire 50.0cm long bent at a right angle in the middle
One section lies along the z axis and the other is along the line y=2x in the xy plane

tan θ = 2
Therefore,
slope m = tan θ = y / x

Then length of each section is 25.0cm
so, length vector of the wire is

And magnetic field is B = (0.318T)i
Therefore,

![\bar F = (20.0)[(0.112m)i +(0.224m)j-(0.250m)k \times 90.318T)i]](https://tex.z-dn.net/?f=%5Cbar%20F%20%3D%20%2820.0%29%5B%280.112m%29i%20%2B%280.224m%29j-%280.250m%29k%20%5Ctimes%2090.318T%29i%5D)
![= (20.0)(i(0)+j(-0.250)(0.318T)+k[0-(0.224m)(0.318T)]\\\\=(20.0)(-0.250)(0.318)j-(20.0)(0.224)(0.318T)\\\\=-(1.59N)j-(1.425N)k](https://tex.z-dn.net/?f=%3D%20%2820.0%29%28i%280%29%2Bj%28-0.250%29%280.318T%29%2Bk%5B0-%280.224m%29%280.318T%29%5D%5C%5C%5C%5C%3D%2820.0%29%28-0.250%29%280.318%29j-%2820.0%29%280.224%29%280.318T%29%5C%5C%5C%5C%3D-%281.59N%29j-%281.425N%29k)
Magnitude of the force is

Direction is

Magnitude of the force is 2.135N and the direction is 41.8° below negative y-axis
Answer:
B. 4 m/s
Explanation:
v=d/t
Running for 300 m at 3 m/s takes 100 seconds and running at 300 m at 6 m/s takes 50 seconds. 100 s + 50 s = 150 s (total time). Total distance is 600 m, so 600 m/ 150 s = 4 m/s.
Answer:
The correct option is C
Explanation:
The pendulum bob would return at the same time because the initial angle a pendulum bob is dropped does not affect it's period (the time it takes for the pendulum to move back and forth), however the one with a larger angle move faster but would eventually arrive at the same "starting point" due to varying displacements made.
Answer:
2046.37 kPa
Explanation:
Given:
Number of moles, n = 125
Temperature, T = 20° C = 20 + 273 = 293 K
Radius of the cylinder, r = 17 cm = 0.17 m
Height of the cylinder, h = 1.64 m
thus,
volume of the cylinder, V = πr²h
= π × 0.17² × 1.64
= 0.148 m³
Now,
From the ideal gas law
we have
PV = nRT
here,
P is the pressure
R is the ideal gas constant = 8.314 J / mol. K
thus,
P × 0.148 = 125 × 8.314 × 293
or
P × 0.148 = 304500.25
or
P = 2046372.64 Pa = 2046.37 kPa