Answer:
a. 2 Hz b. 0.5 cycles c . 0 V
Explanation:
a. What is period of armature?
Since it takes the armature 30 seconds to complete 60 cycles, and frequency f = number of cycles/ time = 60 cycles/ 30 s = 2 cycles/ s = 2 Hz
b. How many cycles are completed in T/2 sec?
The period, T = 1/f = 1/2 Hz = 0.5 s.
So, it takes 0.5 s to complete 1 cycles. At t = T/2 = 0.5/2 = 0.25 s,
Since it takes 0.5 s to complete 1 cycle, then the number of cycles it completes in 0.25 s is 0.25/0.5 = 0.5 cycles.
c. What is the maximum emf produced when the armature completes 180° rotation?
Since the emf E = E₀sinθ and when θ = 180°, sinθ = sin180° = 0
E = E₀ × 0 = 0
E = 0
So, at 180° rotation, the maximum emf produced is 0 V.
Answer:A
Explanation:Find attached picture file for details
Answer:
1/2
Explanation:
We need to make a couple of considerations but basically the problem is solved through the conservation of energy.
I attached a diagram for the two surfaces and begin to make the necessary considerations.
Rough Surface,
We know that force is equal to,



Matching the two equation we have,


Applying energy conservation,





Frictionless surface




Given the description we apply energy conservation taking into account the inertia of a sphere. Then the relation between
and
is given by


Density is the characteristic property of a substance. It is the measure of mass of the substance
divided by its volume (density= mass/volume). Manipulate the given formula to
come up with the formula for the volume. Therefore, volume is equals to mass of
a substance divided by its density (Vol= mass/density). Given 12.6 g/ml as density
and 7.65 g mass, volume is equals to 0.60714 ml, since 1 ml = 1cm^3, volume is
equals to 0.60714 cm^3 then extract the cube root of the volume to get the
length of the cube in cm which is equal to 0.84677 cm.
Answer:
0.22 m
Explanation:
We are told that the driver can survive an acceleration of 50g only if the collision lasts no longer than 30 ms. So,

The acceleration is

where the negative sign is due to the fact that this is a deceleration, since the driver comes to a stop in the collision.
First of all, we can find what the initial velocity of the car should be in this conditions by using the equation:

And since the final velocity is zero, v=0, and solving for u,

And now we can find the corresponding distance travelled using the equation:
