Answer:
B. 4 m/s
Explanation:
v=d/t
Running for 300 m at 3 m/s takes 100 seconds and running at 300 m at 6 m/s takes 50 seconds. 100 s + 50 s = 150 s (total time). Total distance is 600 m, so 600 m/ 150 s = 4 m/s.
Mechanical energy is the sum of kinetic energy and potential energy, or E=Ek+Ep. So Ek=(1/2)*m*v² where m is the mass of the object and v is it's velocity. Mp=m*g*h where m is the mass, g=9.81 m/s² and h is the height of the object. So after we input the numbers the total mechanical energy is
E=(1/2)*2.5*(4.5²) + 2.5*9.81*18 = 25.3125 J + 441.45 J = 466.7625 J. The correct answer is E= 466 J.
Lets make the original number of nuclides at the start is 100.
If 7/8 of 100 is decayed, that means 87.5 decayed.

And there is 1/8 left of the number of nuclide 100. Which is 12.5


How many Half lifes passed for 100 to become 12.5 is 3 Half-Lives.

Each Half-Life is 80 seconds so there is 240 seconds

The answer is that it takes 240 seconds.
Answer:
The value of developed electric force is 
Solution:
As per the question:
Mass of the droplet = 1.8 mg = 
Charge on droplet, Q = 
Distance between the 2 droplets, D = 0.40 cm = 0.004 m
Now, the Electrostatic force given by Coulomb:




The magnitude of force is too low to be noticed.
The correct answer would be that destructive interference is happening. In this interference, the crest of a wave meets a trough of another wave resulting to an amplitude that is lower. The opposite is called the constructive interference. Hope this answers the question.