answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Studentka2010 [4]
2 years ago
4

un ladrillo se deja caer de un andamio alto. Cual es su velocidad despues de 4.0 s? Que tanto cae el ladrillo durante este tiemp

o?​
Physics
1 answer:
boyakko [2]2 years ago
3 0

1) The velocity of the object after 4.0 s is 39.2 m/s

2) The distance covered by the object is 78.4 m

Explanation:

1)

The object is in free fall (the only force acting on it is the force of gravity), so it is a uniformly accelerated motion, with constant acceleration g=9.8 m/s^2 towards the ground. Therefore, we can use the following suvat equation:

v=u+at

where

v is the final velocity

u is the initial velocity

a is the acceleration

t is the time

In this problem, we have:

u = 0 (because the object is dropped from rest)

a=g=9.8 m/s^2 is the acceleration

Substituting t = 4.0 s, we find the velocity of the object after 4.0 seconds:

v=0+(9.8)(4.0)=39.2 m/s

2)

The distance covered by the object during this time interval can be found by using another suvat equation:

s=ut+\frac{1}{2}at^2

where

s is the distance covered

u is the initial velocity

t is the time

a is the acceleration

In this problem, we have:

u = 0

a=g=9.8 m/s^2

And substituting t = 4.0 s, we find the distance covered by the object during the fall:

s=0+\frac{1}{2}(9.8)(4.0)^2=78.4 m

Learn more about free fall:

brainly.com/question/1748290

brainly.com/question/11042118

brainly.com/question/2455974

brainly.com/question/2607086

#LearnwithBrainly

You might be interested in
A baseball pitcher throws a ball at 90.0 mi/h in the horizontal direction. How far does the ball fall vertically by the time it
Lisa [10]

Answer:

Vertical distance=  3.3803ft

Explanation:

First with the speed of the ball and the distance traveled horizontally we can determine the flight time to reach the plate:

Velocity= (90 mi/h) × (1 mile/5280ft) = 475200ft/h

Distance= Velocity × time⇒ time= 60.5ft / (475200ft/h) = 0.00012731h

time=  0.00012731h × (3600s/h)= 0.458316s

With this time we can determine the distance traveled vertically taking into account that its initial vertical velocity is zero and its acceleration is that of gravity, 9.81m/s²:

Vertical distance= (1/2) × 9.81 (m/s²) × (0.458316s)²=1.0303m

Vertical distance= 1.0303m × (1ft/0.3048m) = 3.3803ft

This is the vertical distance traveled by the ball from the time it is thrown by the pitcher until it reaches the plate, regardless of air resistance.

3 0
2 years ago
a block of mass m slides along a frictionless track with speed vm. It collides with a stationary block of mass M. Find an expres
shusha [124]

Answer:

Part a) When collision is perfectly inelastic

v_m = \frac{m + M}{m} \sqrt{5Rg}

Part b) When collision is perfectly elastic

v_m = \frac{m + M}{2m}\sqrt{5Rg}

Explanation:

Part a)

As we know that collision is perfectly inelastic

so here we will have

mv_m = (m + M)v

so we have

v = \frac{mv_m}{m + M}

now we know that in order to complete the circle we will have

v = \sqrt{5Rg}

\frac{mv_m}{m + M} = \sqrt{5Rg}

now we have

v_m = \frac{m + M}{m} \sqrt{5Rg}

Part b)

Now we know that collision is perfectly elastic

so we will have

v = \frac{2mv_m}{m + M}

now we have

\sqrt{5Rg} = \frac{2mv_m}{m + M}

v_m = \frac{m + M}{2m}\sqrt{5Rg}

6 0
2 years ago
Inna Hurry is traveling at 6.8 m/s, when she realizes she is late for an appointment. She accelerates at 4.5 m/s^2 for 3.2 s. Wh
Alborosie

Answer:

1) v = 21.2 m/s

2) S = 63.33 m

3) s = 61.257 m

4) Deceleration, a = -4.32 m/s²

Explanation:

1) Given,

The initial velocity of Inna, u = 6.8 m/s

The acceleration of Inna, a = 4.5 m/s²

The time of travel, t = 3.2 s

Using the first equation of motion, the final velocity is

                v = u + at

                   = 6.8 + 4.5 x 3.2

                   = 21.2 m/s

The final velocity of Inna is, v = 21.2 m/s

2) Given,

The initial velocity of Lisa, u = 12 m/s

The final velocity of Lisa, v = 26 m/s

The acceleration of Lisa, a = 4.2 m/s²

Using the III equations of motion, the displacement is

                          v² = u² +2aS

                         S = (v² - u²) / 2a

                            = (26² -12²) / 2 x 4.2

                            = 63.33 m

The distance Lisa traveled, S = 63.33 m

3) Given,

The initial velocity of Ed, u = 38.2 m/s

The deceleration of Ed, d = - 8.6 m/s²

The time of travel, t = 2.1 s

Using the II equations of motion, the displacement is

                        s = ut + 1/2 at²

                           =38.2 x 2.1 + 0.5 x(-8.6) x 2.1²

                           = 61.257 m

Therefore, the distance traveled by Ed, s = 61.257 m

4) Given,

The initial velocity of the car, u = 24.2 m/s

The final velocity of the car, v = 11.9 m/s

The time taken by the car is, t = 2.85 s

Using the first equations of motion,

                         v = u + at

∴                        a = (v - u) / t

                            = (11.9 - 24.2) / 2.85

                            = -4.32 m/s²

Hence, the deceleration of the car, a = = -4.32 m/s²

5 0
2 years ago
Read 2 more answers
A solenoid that is 35 cm long and contains 450 circular coils 2.0 cm in diameter carries a 1.75-A current. (a) What is the magne
Taya2010 [7]

Answer:

Explanation:

a )  No of turns per metre

n = 450 / .35

= 1285.71

Magnetic field inside the solenoid

B = μ₀ n I

Where I is current

B = 4π x 10⁻⁷ x 1285.71 x 1.75

= 28.26 x 10⁻⁴ T

This is the uniform magnetic field inside the solenoid.

b )

Magnetic field around a very long wire at a distance d is given by the expression

B = ( μ₀ /4π ) X 2I / d

= 10⁻⁷ x 2 x ( 1.75 / .01 )

= .35 x 10⁻⁴ T

In the second case magnetic field is much less. It is due to the fact that in the solenoid magnetic field gets multiplied due to increase in the number of turns. In straight coil this does not happen .

6 0
2 years ago
Read 2 more answers
A rigid tank contains nitrogen gas at 227 °C and 100 kPa gage. The gas is heated until the gage pressure reads 250 kPa. If the a
aleksley [76]

Answer:

 T₂ =602  °C

Explanation:

Given that

T₁ = 227°C =227+273 K

T₁ =500 k

Gauge pressure at condition 1 given = 100 KPa

The absolute pressure at condition 1 will be

P₁ = 100 + 100 KPa

P₁ =200 KPa

Gauge pressure at condition 2 given = 250 KPa

The absolute pressure at condition 2 will be

P₂ = 250 + 100 KPa

P₂ =350 KPa

The temperature at condition 2 = T₂

We know that

\dfrac{T_2}{T_1}=\dfrac{P_2}{P_1}\\T_2=T_1\times \dfrac{P_2}{P_1}\\T_2=500\times \dfrac{350}{200}\ K\\

T₂ = 875 K

T₂ =875- 273 °C

T₂ =602  °C

5 0
2 years ago
Other questions:
  • Bob has a brother, jim, who has a daughter named bertha. Bertha's daughter, jennifer, has a sister named penny. which of the fol
    5·2 answers
  • When we draw a diagram of the forces acting on an extended object, the tail of the force vector for the weight should be at?
    6·1 answer
  • Choose which statements correctly identify the relationship of mass volume and density by clicking the sentence
    8·1 answer
  • Frequency is deoted as hertz; hertz is a measurement of the _________ _____ __________ that a wave is occurring.
    13·1 answer
  • A hummingbird can a flutter its wings 4800 times per minute what is the frequency of wing flutters per second
    5·2 answers
  • When you skid to a stop on your bike, you can significantly heat the small patch of tire that rubs against the road surface. Sup
    9·1 answer
  • A ball is thrown upward from the top of a 25.0 m tall building. The ball’s initial speed is 12.0 m/sec. At the same instant, a p
    10·1 answer
  • Which statements describe properties of stars check all that apply
    7·1 answer
  • 1. For each of the following scenarios, describe the force providing the centripetal force for the motion: a. a car making a tur
    10·1 answer
  • A particle is moving along the x-axis. Its position as a function of time is given as x=bt-ct^2a) What must be the units of the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!