answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kramer
2 years ago
15

A 320-g ball and a 400-g ball are attached to the two ends of a string that goes over a pulley with a radius of 8.7 cm. Because

of friction in its axle, the pulley does not begin to rotate. What is the magnitude of the frictional torque at the axle of the pulley if the system remains at rest when the balls are released?
Physics
1 answer:
Gnom [1K]2 years ago
8 0

To solve this problem, it is necessary to apply the concepts related to force described in Newton's second law, so that

F = ma

Where,

m = mass

a = Acceleration (Gravitational acceleration when there is action over the object of the earth)

Torque, as we know, is the force applied at a certain distance, that is,

\tau = F*d

Where

F= Force

d = Distance

Our values are given as,

m_1 = 0.32Kg

m_2 = 0.4Kg

d = 8.7*10^{-2}m

Since the system is in equilibrium the difference of the torques is the result of the total Torque applied, that is to say

\tau = T_2-T_1

\tau = F_2*d-F_1*d

\tau = m_2g*d-m_1*g*d

\tau = (m_2-m_1)g*d

\tau = (0.4-0.32)(9.8)(8.7*10^{-2})

\tau = 0.068N\cdot m

Therefore the magnitude of the frictional torque at the axle of the pulley if the system remains at rest when the balls are released is \tau = 0.068N\cdot m

You might be interested in
Which one of the following represents an acceptable set of quantum numbers for an electron in an atom? (arranged as n, l, m l ,
Vitek1552 [10]

Answer:

The correct option that represents an acceptable set of quantum numbers for an electron in an atom is;

(b) 4, 3, -3, 1/2.

Explanation:

To solve the question, we note that the available options where the set of quantum numbers for an electron in an atom are arranged as n, l, m l , and ms are;

4, 4, 4, 1/2

4, 3, -3, 1/2

4, 3, 0, 0

4, 5, 7, -1/2

4, 4, -5, 1/2

Let us label them as a to as follows

(a) 4, 4, 4, 1/2

(b) 4, 3, -3, 1/2

(c) 4, 3, 0, 0

(d) 4, 5, 7, -1/2

(e) 4, 4, -5, 1/2

Next we note the rules for the assignment and arrangement of quantum numbers are as follows

Number                                   Symbol                Possible values

Principal Quantum Number  .......n........................1, 2, 3, ......n

Angular momentum quantum

number...............................................l.........................0, 1, 2, .......(n - 1)

Magnetic Quantum Number........m₁......................-l, ..., -1, 0, 1,.....,l  

Spin Quantum Number.................m_s.....................+1/2, -1/2

We are meant to analyze each of the arrangement for acceptability.

Therefore for (a),

we note that the angular momentum quantum number, l =4 , is equal to the principal quantum number n =4 which violates the rule as the maximum value of the angular momentum quantum number is (n-1) where the maximum value of the principal quantum number is n.

Therefore (a) is not acceptable.

(b) Here we note that

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 3 ∈ (0, 1, 2, .......(n - 1)) → acceptable

The magnetic quantum number m₁ = -3 ∈ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = 1/2 ∈ (+1/2, -1/2) → acceptable

Therefore (b) 4, 3, -3, 1/2 represents an acceptable set of quantum numbers for an electron in an atom.

(c) Here we have

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 3 ∈ (0, 1, 2, .......(n - 1)) → acceptable

The magnetic quantum number m₁ = 0 ∈ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = 0 ∉ (+1/2, -1/2) → not acceptable

Therefore (c) 4, 3, 0, 0 does not represents an acceptable set of quantum numbers for an electron in an atom.

(d) Here we have;

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 5 ∉ (0, 1, 2, .......(n - 1)) → not acceptable

The magnetic quantum number m₁ = 7 ∉ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = -1/2 ∈ (+1/2, -1/2) → acceptable

Therefore (d) 4, 5, 7, -1/2 does not represents an acceptable set of quantum numbers for an electron in an atom.

(e) Here we have;

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 4 ∉ (0, 1, 2, .......(n - 1)) → not acceptable

The magnetic quantum number m₁ = -5 ∉ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = 1/2 ∈ (+1/2, -1/2) → acceptable

Therefore (e) 4, 4, -5, 1/2 does not represents an acceptable set of quantum numbers for an electron in an atom.

3 0
2 years ago
The image shows the displacement of a motorboat. The data table shows the magnitudes of the components of each displacement vect
Diano4ka-milaya [45]
Rx= 3.5 km

Ry= 2.9 km
4 0
2 years ago
Read 2 more answers
A plastic rod is rubbed against a wool shirt, thereby acquiring a charge of −4.9 µc. how many electrons are transferred from the
creativ13 [48]
To find the number of electrons transferred, we should divide the total charge acquired by the rod Q=-4.9 \mu C=-4.9 \cdot 10^{-6}C by the charge of a single electron (e=-1.6 \cdot 10^{-19}C), and we find:
N= \frac{Q}{e}=  \frac{-4.9 \cdot 10^{-6}C}{-1.6 \cdot 10^{-19}C} =3.1 \cdot 10^{13}
5 0
2 years ago
Recall that the differential equation for the instantaneous charge q(t) on the capacitor in an lrc-series circuit is l d 2q dt 2
Aloiza [94]
DE which is the differential equation represents the LRC series circuit where
L d²q/dt² + Rdq/dt +I/Cq = E(t) = 150V.
Initial condition is q(t) = 0 and i(0) =0.
To find the charge q(t)  by using Laplace transformation by
Substituting known values for DE
L×d²q/dt² +20 ×dq/dt + 1/0.005× q = 150
d²q/dt² +20dq/dt + 200q =150
5 0
2 years ago
A tennis player smashes a ball of mass m horizontally at a vertical wall. The ball rebounds at the same speed v with which it st
jeka57 [31]

Answer:

The magnitude of change in momentum is (2mv).

Explanation:

The momentum of an object is given by the product of mass and velocity with which it is moving.

Let the mass of ball is m. A tennis player smashes a ball of mass m horizontally at a vertical wall. The ball rebounds at the same speed v with which it struck the wall.

Initial speed of the ball is v and final speed, when it rebounds, is (-v). The change in momentum is given by :

p = final momentum - initial momentum

p=-mv-mv\\\\p=-2mv

So, the magnitude of change in momentum is (2mv).

3 0
2 years ago
Other questions:
  • Two forces F1 and F2 act on a 5.00 kg object. Taking F1=20.0N and F2=15.00N, find the acceleration of the object for the configu
    5·2 answers
  • A charge of 8.4 × 10–4 C moves at an angle of 35° to a magnetic field that has a field strength of 6.7 × 10–3 T. If the magnetic
    16·1 answer
  • When a perfume bottle is opened, some liquid changes to gas and the fragrance spreads around the room. Which sentence explains t
    7·1 answer
  • A charge of uniform volume density (40 nC/m3) fills a cube with 8.0-cm edges. What is the total electric flux through the surfac
    12·1 answer
  • In 1923, the United States Army (there was no U.S. Air Force at that time) set a record for in-flight refueling of airplanes. Us
    13·1 answer
  • Krista is playing tennis at the park. When the tennis ball flies toward her, Krista hits the ball with her racket, which causes
    8·1 answer
  • The seeds were sown (change the voice)​
    15·1 answer
  • An object moving at a velocity of 32m/s slows to a stop in 4 seconds. What was its acceleration?
    11·2 answers
  • A uniform beam XY is 100 cm long and weighs 4.0N.The beam rests on a pivot 60 cm from end X. A load of 8.0 N hangs from the beam
    8·1 answer
  • A ball bearing of radius of 1.5 mm made of iron of density
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!