<u>Answer:</u>
Velocity of the dog relative to the road = 26.04 m/s 3.15⁰ north of east.
<u>Explanation:</u>
Let the east point towards positive X-axis and north point towards positive Y-axis.
Speed of truck = 25 m/s north = 25 j m/s
Speed of dog = 1.75 m/s at an angle of 35.0° east of north = (1.75 cos 35 i + 1.75 sin 35 j)m/s
= (1.43 i + 1.00 j) m/s
Velocity of the dog relative to the road = 25 j + 1.43 i + 1.00 j = 1.43 i + 26.00 j
Magnitude of velocity = 26.04 m/s
Angle from positive horizontal axis = 86.85⁰
So Velocity of the dog relative to the road = 26.04 m/s 86.85⁰ east of north = 26.04 m/s 3.15⁰ north of east.
Answer:
the tension in the rope between the boxes is equal to 88 N
Explanation:
given,
the force applied on one body F = 176 N
When two bodies are moving on horizontal plane at constant velocity then their kinetic friction (f k) is equal to applied force F
According to newton third law the resultant force acting on one body is equal to the resultant force acting on the another body.
T is the tension in the rope

T - F = - (T - F)
T - 176 = - (T - 0)
2 T = 176
T = 176/2 = 88 N
so, the tension in the rope between the boxes is equal to 88 N
Answer:
A: 4 times as much
B: 200 N/m
C: 5000 N
D: 84,8 J
Explanation:
A.
In the first question, we have to caculate the constant of the spring with this equation:

Getting the k:
![k=\frac{m*g}{x} =\frac{0,2[kg]*9,81[\frac{m}{s^{2} } ]}{0,05[m]} =39,24[\frac{N}{m}]](https://tex.z-dn.net/?f=k%3D%5Cfrac%7Bm%2Ag%7D%7Bx%7D%20%3D%5Cfrac%7B0%2C2%5Bkg%5D%2A9%2C81%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D%7D%7B0%2C05%5Bm%5D%7D%20%3D39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D)
Then we can calculate how much the spring stretch whith the another mass of 0,2kg:
![x=\frac{m*g}{k} =\frac{0,4[kg]*9,81[\frac{m}{s^{2} } ]}{39,24[\frac{N}{m}]} =0,1[m]\\](https://tex.z-dn.net/?f=x%3D%5Cfrac%7Bm%2Ag%7D%7Bk%7D%20%3D%5Cfrac%7B0%2C4%5Bkg%5D%2A9%2C81%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D%7D%7B39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D%7D%20%3D0%2C1%5Bm%5D%5C%5C)
The energy of a spring:

For the first case:
![E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,05[m])^{2} =0,049 [J]](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B1%7D%7B2%7D%20%2A39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D%2A%280%2C05%5Bm%5D%29%5E%7B2%7D%20%3D0%2C049%20%5BJ%5D)
For the second case:
![E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,1[m])^{2} =0,0196 [J]](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B1%7D%7B2%7D%20%2A39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D%2A%280%2C1%5Bm%5D%29%5E%7B2%7D%20%3D0%2C0196%20%5BJ%5D)
If you take the relation E2/E1 = 4.
B.
We have the next facts:
x=0,005 m
E = 0,0025 J
Using the energy equation for a spring:
⇒![k=\frac{E*2}{x^{2} } =\frac{0,0025[J]*2}{(0,005[m])^{2} } =200[\frac{N}{m} ]](https://tex.z-dn.net/?f=k%3D%5Cfrac%7BE%2A2%7D%7Bx%5E%7B2%7D%20%7D%20%3D%5Cfrac%7B0%2C0025%5BJ%5D%2A2%7D%7B%280%2C005%5Bm%5D%29%5E%7B2%7D%20%7D%20%3D200%5B%5Cfrac%7BN%7D%7Bm%7D%20%5D)
C.
The potential energy of the diver will be equal to the kinetic energy in the moment befover hitting the watter.
![E=W*h=500[N]*10[m]=5000[J]](https://tex.z-dn.net/?f=E%3DW%2Ah%3D500%5BN%5D%2A10%5Bm%5D%3D5000%5BJ%5D)
Watch out the units in this case, the 500 N reffer to the weighs of the diver almost relative to the earth, thats equal to m*g.
D.
The work is equal to the force acting in the direction of the motion. so we have to do the diference beetwen angles to obtain the effective angle where the force is acting: 47-15=32 degree.
The force acting in the direction of the ramp will be the projection of the force in the ramp, equal to F*cos(32). The work will be:
W=F*d=F*cos(32)*d=10N*cos(32)*10m=84,8J
Velocity is a vector quantity and depends on both speed and direction.
In 100m you only travel straight in one direction.
But in 400m you have to turn corners and then go back the way you came, and then turn another corner, you're changing direction - hence changing velocity, even if the speed is the same.
Answer:
vₓ = 20 m/s, v_{y} = -15 m / s
Explanation:
This is a conservation of moment problem, since it is a vector quantity we can work each axis independently
The system is formed by the two drones, so the forces during the crash are internal and the moment is conserved
X axis
Initial moment. Before the crash
p₀ = m₁ v₀ₓ + m₂ v₀ₓ
Final moment. After the crash
p_{fx} = (m₁ + m₂) vₓ
p₀ₓ =
m₁ v₀ₓ + m₂ v₀ₓ = (m₁ + m₂) vₓ
vₓ = (m₁ + m₂) v₀ₓ / (m₁ + m₂)
vₓ = v₀ₓ = 20 m/s
Y Axis
Initial
p_{oy} = m₁ v_{oy}
Final
p_{fy} = (m₁ + m₂) v_{y}
p_{oy} = p_{fy}
the drom rises and when it falls it has the same speed because there is no friction v_{oy} = -60 m/s
m₁
= (m₁ + m₂) v_{y}
v_{y} = m₁ / (m₁ + m₂) v_{oy}
v_{y} = 1/4 60
v_{y} = -15 m / s
Vertical speed is down