Question
Initially, the baton is spinning about a line through its center at angular velocity 3.00 rad/s. What is its angular momentum? Express your answer in kilogram meters squared per second.
Answer:

Explanation:
The angular momentum L of the baton moving about an axis perpendicular to it, passing through the center of the baton is,

Here, l is the length of the baton.
Substitute 0.120 kg for m, 3 rads/s for ![\omega[\tex] and 0.8 m for l [tex]\begin{array}{c}\\L = \frac{1}{{12}}m{l^2}\omega \\\\ = \frac{1}{{12}}\left( {0.120{\rm{ kg}}} \right){\left( {{\rm{80}}{\rm{.0 cm}}} \right)^2}{\left( {\frac{{1 \times {{10}^{ - 2}}{\rm{m}}}}{{1{\rm{ cm}}}}} \right)^2}\left( {{\rm{3}}{\rm{.00 rad/s}}} \right)\\\\ = 0.0192{\rm{ kg}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/s}}\\\end{array}](https://tex.z-dn.net/?f=%5Comega%5B%5Ctex%5D%20and%200.8%20m%20for%20l%20%5Btex%5D%5Cbegin%7Barray%7D%7Bc%7D%5C%5CL%20%3D%20%5Cfrac%7B1%7D%7B%7B12%7D%7Dm%7Bl%5E2%7D%5Comega%20%5C%5C%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B%7B12%7D%7D%5Cleft%28%20%7B0.120%7B%5Crm%7B%20kg%7D%7D%7D%20%5Cright%29%7B%5Cleft%28%20%7B%7B%5Crm%7B80%7D%7D%7B%5Crm%7B.0%20cm%7D%7D%7D%20%5Cright%29%5E2%7D%7B%5Cleft%28%20%7B%5Cfrac%7B%7B1%20%5Ctimes%20%7B%7B10%7D%5E%7B%20-%202%7D%7D%7B%5Crm%7Bm%7D%7D%7D%7D%7B%7B1%7B%5Crm%7B%20cm%7D%7D%7D%7D%7D%20%5Cright%29%5E2%7D%5Cleft%28%20%7B%7B%5Crm%7B3%7D%7D%7B%5Crm%7B.00%20rad%2Fs%7D%7D%7D%20%5Cright%29%5C%5C%5C%5C%20%3D%200.0192%7B%5Crm%7B%20kg%7D%7D%20%5Ccdot%20%7B%7B%5Crm%7Bm%7D%7D%5E%7B%5Crm%7B2%7D%7D%7D%7B%5Crm%7B%2Fs%7D%7D%5C%5C%5Cend%7Barray%7D)
I attached the missing picture.
We can figure this one out using the law of conservation of energy.
At point A the car would have potential energy and kinetic energy.

Then, while the car is traveling down the track it loses some of its initial energy due to friction:

So, we know that the car is approaching the point B with the following amount of energy:

The law of conservation of energy tells us that this energy must the same as the energy at point B.
The energy at point B is the sum of car's kinetic and potential energy:

As said before this energy must be the same as the energy of a car approaching the loop:

Now we solve the equation for

:
The quantity that has a magnitude of zero when the ball is at the highest point in its trajectory is
the vertical velocity.
In fact, the motion of the ball consists of two separate motions:
- the horizontal motion, on the x-axis, which is a uniform motion with constant velocity

, where

- the vertical motion, on the y-axis, which is a uniformly accelerated motion with constant acceleration

directed downwards, and with initial velocity

. Due to the presence of the acceleration g on the vertical direction (pointing in the opposite direction of the initial vertical velocity), the vertical velocity of the ball decreases as it goes higher, up to a point where it becomes zero and it reverses its direction: when the vertical velocity becomes zero, the ball has reached its maximum height.
(a) 
The radiation pressure exerted by an electromagnetic wave on a surface that totally absorbs the radiation is given by

where
I is the intensity of the wave
c is the speed of light
In this problem,

and substituting
, we find the radiation pressure

(b) 
Since we know the cross-sectional area of the laser beam:

starting from the radiation pressure found at point (a), we can calculate the force exerted on a tritium atom:

And then, since we know the mass of the atom

we can find the acceleration, by using Newton's second law:
