Answer:
(a) v = 15m/a
(b) No they won't feast because the rock can only rise to a height of 11.5m which is less than 15m.
Explanation:
Please see the attachment below for film solution.
Answer:
μ = 0.535
Explanation:
On a level floor, normal force = weight.
N = W
Friction force = normal force × coefficient of friction.
F = Nμ
Substitute:
F = Wμ
83 = 155μ
μ = 0.535
Round as needed.
Answer:
In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).
Explanation:
The portion of UV-visible radiation that is absorbed implies that a portion of electromagnetic radiation is not absorbed by the sample and is therefore transmitted through it and can be captured by the human eye. That is, in the visible region of a complex, the visible color of a solution can be seen and that corresponds to the wavelengths of light it transmits, not absorbs. The absorbing color is complementary to the color it transmits.
So, in the attached image you can see the approximate wavelengths with the colors, where they locate the wavelength with the absorbed color, you will be able to observe the complementary color that is seen or reflected.
<u><em>
In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).</em></u>
Answer:
the inductive reactance of the coil is 1335.35 Ω
Explanation:
Given;
inductance of the coil, L = 250 mH = 0.25 H
effective current through the coil, I = 5 mA
frequency of the coil, f = 850 Hz
The inductive reactance of the coil is calculated as;

Therefore, the inductive reactance of the coil is 1335.35 Ω
Weight = mass * gravity
420 = mass * 9.8
mass of Betty = 42.857 kg
Difference in height = 1 - 0.45 = 0.55 meters
Total energy = Kinetic energy + potential energy
At the highest point, the kinetic energy is zero while the potential energy is maximum, therefore, we can get the total energy as follows:
Total energy = 0 + mgh
Total energy = 42.857*9.8*0.55 = 231 Joules
At the lowest point, the potential energy is zero while the kinetic energy is maximum. Therefore:
Total energy = 0.5 * m * (v)^2 + 0
231 = 0.5 * (42.857) * (velocity)^2
(velocity)^2 = 10.78
velocity = 3.28 meters/sec