answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zolol [24]
2 years ago
10

An end of a light wire rod is bent into a hoop of radius r. The straight part of the rod has length l; a ball of mass M is attac

hed to the other end of the rod. The pendulum thus formed is hung by the hoop onto a revolving shaft. The coefficient of friction between the shaft and the hoop is µ. Find the equilibrium angle between the rod and the vertical.
Physics
1 answer:
Roman55 [17]2 years ago
8 0

Answer:

arcsin(\frac{R\mu}{(R+l)\sqrt{\mu^2+1}})

Explanation:

By the Law of Sines,

sin \theta = \frac{sin \phi R}{ l + R}

From Newton's Law,

mg = N\sqrt{\mu^2+1}

And the last equation again from Newton's Law,

\mu N = mgsin\phi

Then if we collect all equations together,

\mu N = mgsin\phi = N\sqrt{\mu^2+1}sin\phi\\

sin\theta = \frac{\mu R}{ (l + R)\sqrt{\mu^2+1}}

Thus,

\theta = arcsin(\frac{R\mu}{(R+l)\sqrt{\mu^2+1}})

You might be interested in
1. A 930-kg car traveling 56 km/h comes to a complete stop in 2.0 s. What is the
Juli2301 [7.4K]

The force exerted on the car during this stop is 6975N

<u>Explanation:</u>

Given-

Mass, m = 930kg

Speed, s = 56km/hr = 56 X 5/18 m/s = 15m/s

Time, t = 2s

Force, F = ?

F = m X a

F = m X s/t

F = 930 X 15/2

F = 6975N

Therefore, the force exerted on the car during this stop is 6975N

6 0
2 years ago
The primary of a step-up transformer is connected across the terminals of a standard wall socket, and resistor 1 with a resistan
alexira [117]
The turns ratio is the factor that determines voltage andcurrent. In order to have the same current across the resistorin the primary as the resistor in the secondary, then:--N(p) = Primary turnsN(s) = Secondary turnsR(2) = Primary resistorR(1) = Secondary resistor--R(2)/R(1) = N(p)/N(s)R(2) = R(1)*(N(p)/N(s))--If arbitrary values are plugged in, you will see that this step up transformer will require 2x the resistance required in the secondary, R(1), to obtain the same current. Thus R(2) will be 1/2 the value of R(1). This is due to the stepped up voltage in the secondary.
3 0
2 years ago
A street light is mounted at the top of a 15-ft-tall pole. A man 6 ft tall walks away from the pole with a speed of 4 ft/s along
babymother [125]

Answer:

Explanation:

height of pole = 15 ft

height of man = 6 ft

Let the length of shadow is y .

According to the diagram

Let at any time the distance of man is x.

The two triangles are similar

\frac{y-x}{y}=\frac{6}{15}

15 y - 15 x = 6 y

9 y = 15 x

y=\frac{5}{3}x

Differentiate with respect to time.

\frac{dy}{dt}=\frac{5}{3}\frac{dx}{dt}

As given, dx/dt = 4 ft/s

\frac{dy}{dt}=\frac{5}{3}\times 4

\frac{dy}{dt}=\frac{20}{3} ft/s

6 0
2 years ago
abin is doing work by lifting a bowling ball. Which statement could be made about the energy in this situation?
PtichkaEL [24]
The statement that could be made about the energy in this situation would be :
It being transferred from his arms muscles to the ball.

The muscle contraction from his arms created a force that could be used to lift the ball up.<span />
8 0
2 years ago
Read 2 more answers
You are provided with three polarizers with filters making angles of (A) 90 ​∘ ​​ , (B) 180 ​∘ ​​ and (C) −45 ​∘ ​​ with respect
irinina [24]

Answer:

Order of maximum transmission of the polarizer is A, C and B.

Solution:

As per the question:

For the first polarizer, the angle is quite insignificant:

(A) 90^{\circ}:

The light intensity after passing through the first polarizer is I_{o} and this intensity does not depend on the angle of the polarizer.

Consider 90^{\circ} with the vertical, the intensity is given by:

I = I_{o}cos^{2}90^{\circ}

I = I_{o}cos(2(45^{\circ})) = I_{o}(\frac{1+cos90^{\circ})}{2} = \frac{I_{o}}{2}

(B) 180^{\circ}:

Suppose the second polarizer is  45^{\circ} with the vertical.

Now, intensity through the second polarizer:

I' = Icos^{2}(\theta_{2} - \theta_{1}) = \frac{I_{o}}{2}cos^{2}(- 45 - 90)

I' =  \frac{I_{o}}{2}cos^{2}135^{\circ} = \frac{I_{o}}{4}

Now, if we consider the second polarizer to be 180^{\circ},

I' = \frac{I_{o}}{2}cos^{2}180^{\circ} = \frac{I_{o}}{2}cos^{2}(180^{\circ} - 90^{\circ}) = 0

(C) - 45^{\circ}:

Now,

Intensity through the third polarizer, if it is 180^{\circ} with the vertical:

I' = Icos^{2}(\theta_{2} - \theta_{1}) = \frac{I_{o}}{2}cos^{2}(180 - (- 45))

I' = \frac{I_{o}}{8}

5 0
2 years ago
Other questions:
  • This version of Einstein’s equation is often used directly to find what value?
    14·2 answers
  • student uses a magnet to move a 0.025 kg metal ball magnet exerts a force of 5N which causes the ball to begin moving what is th
    11·1 answer
  • a force of 25.0 newtons is applied so as to move a 5.0 kg mass a distance of 20.0 meters. How much work was done? with work plea
    6·1 answer
  • Calculate a pendulum's frequency of oscillation (in Hz) if the pendulum completes one cycle in 0.5 s.
    15·1 answer
  • Choose the option below that best completes this sentence: when two circuit elements (e.g., light bulbs, resistors, etc.) are in
    7·1 answer
  • A 1 530-kg automobile has a wheel base (the distance between the axles) of 2.70 m. The automobile's center of mass is on the cen
    13·1 answer
  • In the photoelectric effect, the greater the frequency of the illuminating light, the greater the:_______
    7·1 answer
  • A 1.47-newton baseball is dropped from a height of 10.0 meters and falls through the air to the ground. The kinetic energy of th
    15·2 answers
  • . A magnetic field has a magnitude of 0.078 T and is uniform over a circular surface whose radius is 0.10 m. The field is orient
    15·1 answer
  • Bears eat fruits such as berries and animals such as fish. They hibernate in the winter. They give birth to live young . Which o
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!