The force exerted on the car during this stop is 6975N
<u>Explanation:</u>
Given-
Mass, m = 930kg
Speed, s = 56km/hr = 56 X 5/18 m/s = 15m/s
Time, t = 2s
Force, F = ?
F = m X a
F = m X s/t
F = 930 X 15/2
F = 6975N
Therefore, the force exerted on the car during this stop is 6975N
The turns ratio is the factor that determines voltage andcurrent. In order to have the same current across the resistorin the primary as the resistor in the secondary, then:--N(p) = Primary turnsN(s) = Secondary turnsR(2) = Primary resistorR(1) = Secondary resistor--R(2)/R(1) = N(p)/N(s)R(2) = R(1)*(N(p)/N(s))--If arbitrary values are plugged in, you will see that this step up transformer will require 2x the resistance required in the secondary, R(1), to obtain the same current. Thus R(2) will be 1/2 the value of R(1). This is due to the stepped up voltage in the secondary.
Answer:
Explanation:
height of pole = 15 ft
height of man = 6 ft
Let the length of shadow is y .
According to the diagram
Let at any time the distance of man is x.
The two triangles are similar

15 y - 15 x = 6 y
9 y = 15 x

Differentiate with respect to time.

As given, dx/dt = 4 ft/s

ft/s
The statement that could be made about the energy in this situation would be :
It being transferred from his arms muscles to the ball.
The muscle contraction from his arms created a force that could be used to lift the ball up.<span />
Answer:
Order of maximum transmission of the polarizer is A, C and B.
Solution:
As per the question:
For the first polarizer, the angle is quite insignificant:
(A)
:
The light intensity after passing through the first polarizer is
and this intensity does not depend on the angle of the polarizer.
Consider
with the vertical, the intensity is given by:

(B)
:
Suppose the second polarizer is
with the vertical.
Now, intensity through the second polarizer:


Now, if we consider the second polarizer to be
,

(C)
:
Now,
Intensity through the third polarizer, if it is
with the vertical:

