Answer:
Incomplete question
Check attachment for the given diagram
Explanation:
Given that,
Initial Velocity of drum
u=3m/s
Distance travelled before coming to rest is 6m
Since it comes to rest, then, the final velocity is 0m/s
v=3m/s
Using equation of motion to calculate the linear acceleration or tangential acceleration
v²=u²+2as
0²=3²+2×a×6
0=9+12a
12a=-9
Then, a=-9/12
a=-0.75m/s²
The negative sign shows that the cylinder is decelerating.
Then, a=0.75m/s²
So, using the relationship between linear acceleration and angular acceleration.
a=αr
Where
a is linear acceleration
α is angular acceleration
And r is radius
α=a/r
From the diagram r=250mm=0.25m
Then,
α=0.75/0.25
α =3rad/sec²
The angular acceleration is =3rad/s²
b. Time take to come to rest
Using equation of motion
v=u+at
0=3-0.75t
0.75t=3
Then, t=3/0.75
t=4 secs
The time take to come to rest is 4s
Assuming that all energy of the small ball is transferred
to the bigger ball upon impact, then we can say that:
Potential Energy of the small ball = Kinetic Energy of
the bigger ball
Potential Energy = mass * gravity * height
Since the small ball start at 45 cm, then the height
covered during the swinging movement is only:
height = 50 cm – 45 cm = 5 cm = 0.05 m
Calculating for Potential Energy, PE:
PE = 2 kg * 9.8 m / s^2 * 0.05 m = 0.98 J
Therefore, maximum kinetic energy of the bigger ball is:
<span>Max KE = PE = 0.98 J</span>
Answer:
Explanation:
The speed of the water in the large section of the pipe is not stated
so i will assume 36m/s
(if its not the said speed, input the figure of your speed and you get it right)
Continuity equation is applicable for ideal, incompressible liquids
Q the flux of water that is Av with A the cross section area and v the velocity,
so,


the diameter decreases 86% so


Thus, speed in smaller section is 48.6 m/s
Answer:
The angular velocity of Ball A will be greater than the angular velocity of Ball B when they reach the top of the hill.
Explanation:
Angular velocity can be defined as how fast an object rotates relative to a given point or frame of reference.
The question said the hill encountered by Ball A is frictionless, so Ball A will continue to rotate at the same rate it started with even when it reached the top of the hill.
Ball B on the other hand rolls without slipping over its hill, i.e there's friction to slow down its rotational motion which thus reduces how fast Ball B will rotate at the top of the hill