The output of the machine is
(output work) = (output force) x (distance)
450 N-m = (output force) x (3 meters)
Divide each side
by 3 meters: Output force = (450 N-m) / (3 m)
= 150 newtons .
With all the information given about the output work, we don't need
to know anything about the input work, or even the fact that we're
dealing with a machine.
It's comforting, though, to look back and notice that the output work
(450 N-m) is not more than the input work (500 N-m). So everything
is nice and hunky-dory.
___________________________________
Well, my goodness !
I didn't even need to go through all of that.
Given:
-- The input force to the machine is 50 newtons.
-- The mechanical advantage of the machine is 3 .
That right there tells us that
-- The output force of the machine is 150 newtons.
We don't need any of the other given information.
Answer:
475
Explanation:
Cori does not exert any more force than 475 J, so 475 is the answer.
Answer:
The minimum riding speed relative to the whistle (stationary) to be able to hear the sound at 21.0 kHz frequency is 15.7 m/s
Explanation:
The Doppler shift equation is given as follows;

Where:
f' = Required observed frequency = 20.0 kHz
f = Real frequency = 21.0 kHz
v = Sound wave velocity = 330 m/s
= Observer velocity = X m/s
= Source velocity = 0 m/s (Assuming the source is stationary)
Which gives;

330 -
= (20/21)*330
= 330 - (20/21)*330 = 15.7 m/s
The minimum riding speed relative to the whistle (stationary) to be able to hear the sound at 21.0 kHz frequency = 15.7 m/s.
Answer:
Current X has a lower potential difference than Current Y.
Explanation:
The table is as follows:
Current Volts (V)
W 9.0
X 1.5
Y 3.0
Z 4.5
There are two quantities represented in the table:
1) Current: the current is the rate of flow of electric charge in a circuit. It is given by

where q is the amount of charge that passes a given point of a circuit in a time t. It is measured in Ampere (A).
2) Potential difference: the potential difference is the difference in electric potential between two points of a circuit. The potential difference is responsible for "pushing" the electrons through the circuit and producing a current. It is measured in Volts (V).
From the table, we see that
Current X has a lower potential difference (1.5 Volts) than Current Y (3.0 Volts)
So the correct choice is
Current X has a lower potential difference than Current Y.
Answer:
(a) 2.5 cm
(b) Yes
Solution:
As per the question:
Mass of Uranium-235 ion, m = 
Mass of Uranium- 238, m' = 
Velocity, v = 
Magnetic field, B = 0.250 T
q = 3e
Now,
To calculate the path separation while traversing a semi-circle:

The radius of the ion in a magnetic field is given by:
R = 



Now,
By putting suitable values in the above eqn:


(b) Since the order of the distance is in cm, thus clearly this distance is sufficiently large enough in practical for the separation of the two uranium isotopes.