When the system is experiencing a uniformly accelerated motion, there are a set of equations to work from. In this case, work is energy which consist solely of kinetic energy. That is, 1/2*m*v2. First, let's find the final velocity.
a = (vf - v0)/t
2.6 = (vf - 0)/4
vf = 10.4 m/s
Then W = 1/2*(2100 kg)*(10.4 m/s)2
W = 113568 J = 113.57 kJ
Answer:
C The launcher will fall off the platform and land D/2 to the left of the platform because the launcher is twice the mass of the ball.
Explanation:
The figure is missing: you can find it in attachment.
We can apply the law of conservation of momentum to check that the launcher will leave the platform with a speed which is half the speed of the ball. In fact, the total initial momentum is zero:

while the total final momentum is:

where
is the mass of the launcher
is the mass of the ball
is the velocity of the launcher
is the velocity of the ball
Since the total momentum must be conserved,
, so

Therefore we find

which means that the launcher leaves the platform with a velocity which is half that of the ball, and in the opposite direction (to the left).
Since the distance covered by both the ball and the launcher only depends on their horizontal velocity, this also means that the launcher will cover half the distance covered by the ball before reaching the ground: therefore, since the ball covers a distance of D, the launcher will cover a distance of D/2.
Answer:
1.05 N
Explanation:
K = 0.7 N/m
e = 1.5 m
F = ?
from Hooke's law of elasticity
F = Ke
= 0.7×1.5
= 1.05 N
<u>Answer:</u>
After reaching crossing locomotive takes 17.6 seconds to reach velocity 32 m/s.
<u>Explanation:</u>
Acceleration of locomotive = 1.6 
Time at which it crosses crossing = 2.4 seconds.
We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.
When it reaches 32 m/s, v = 32 m/s, u = 0 m/s, a= 1.6
seconds.
32 = 0 + 1.6 * t
t = 20 seconds.
So locomotive's velocity is 32 m/s after 20 seconds and it reaches crossing at 2.4 seconds.
So after reaching crossing it takes 17.6 seconds to reach velocity 32 m/s.
Answer:
If there is any sheets or padded material in this room you can cover the window, you could turn off all the lights if there is a light switch in the room, you could try to bring a bright flashlight in and shine it into the other room(try to annoy the person watching you so they leave), act really boring and hopefully make the other person lose interest.
Explanation:
(hint) If you actually get in a situation like this place your fingernail against the mirror or glass you think could possibly be a one-way mirror. If there's a gap between your nail and the mirror, it's most likely a genuine mirror :)