The info given in the question:
Voltage= 120V
Current=18A
Now we have to find the resistance. To find it use the following formula:
V=IR
Now making R to be the subject of the formula
R=V/I
R=120/18
The answer is 6.67 ohms
As dishwasher is the only resistor in the line the voltage drop is going to be 120V. The resistance values determines the hindrance that is present in the circuit that opposes the free flowing electrons
Hey there!
The pressure under a liquid column can be , calculated using the following formula :
P = p x g x h
P atm = 1.013 x 10⁵ Pa
g = 9.8 m/s²
h = ?
h = P / ( p x g ) =
h= ( 1.013 x 10⁵ Pa ) / ( 900 x 9.8 ) =
h = ( 1.013 x 10⁵ ) / ( 8820 ) =
h = 11.48 m ≈ 11.50 m
Hope this helps!
Answer:
10.347 minutes.
Explanation:
According to F = ma, she exerts force on camera of the magnitude
F = 0.67Kg*12m/
= 8.04N, assuming it took her one second to accelerate camera to 12m/s, then by newtons third law, which says every action has equal and opposite reaction , the camera exerts the same amount of force on the astronaut which gives her acceleration of a =
.
and velocity of V = 0.1130801680m/s.
at this velocity , the astronaut has to cover the distance of 70.2 meters, it will take her 620.7985075s = 10.347 min to get to the shuttle (using S = vt).
Answer:
Explanation:
If I assume that the wind did not cause the plane to chage its velocity.
The plane will have a velocity of vp = (0*i + 100*j) km/h relative to ground
The cart has a velocity of vc = (0*i - 20*j) km/h relative to the plane
vc' = vc + vp
vc' = (0*i + 100*j) + (0*i - 20*j) = (0*i + 80*j) km/h relative to the ground.
If I assume that the wind move the plane:
The plane will have a velocity of vp = (-40*i + 100*j) km/h relative to ground
The cart has a velocity of vc = (0*i - 20*j) km/h relative to the plane
vc' = vc + vp
vc' = (-40*i + 100*j) + (0*i - 20*j) = (-40*i + 80*j) km/h relative to the ground.
In reality the wind would move the plane a little, not to the full speed of the wind, somewhere between these two values, but without more data it cannot be calculated.
Answer:
0.60 m/s
Explanation:
The average velocity from t = a to t = b is:
v_avg = (x(b) − x(a)) / (b − a)
Given that x(t) = 0.36t² − 1.20t, and the time is from 1.0 to 4.0:
v_avg = (x(4.0) − x(1.0)) / (4.0 − 1.0)
v_avg = [(0.36(4.0)² − 1.20(4.0)) − (0.36(1.0)² − 1.20(1.0))] / 3.0
v_avg = [(5.76 − 4.8) − (0.36 − 1.20)] / 3.0
v_avg = [0.96 − (-0.84)] / 3.0
v_avg = 0.60
The average speed is 0.60 m/s.