Answer:

Explanation:
By the Law of Sines,

From Newton's Law,

And the last equation again from Newton's Law,

Then if we collect all equations together,


Thus,

Answer:
f=15.5 Hz
Explanation:
Let's determine the internal resistance:

ρ = 1.68*10^-8 Ω m


Ω
Since the bulb is rated at 12.0 V and 25.0 W,
Current

Therefore, voltage drop inside generator =

Actual EMF required is

Note that this is an RMS value.
The peak voltage is

For a generator, by Faraday's Law,

*ω
ω
f=ω/(2π)=
f=144.5 rad/s/(2π)
f=23.001 Hz
(u) = 20 m/s
(v) = 0 m/s
<span> (t) = 4 s
</span>
<span>0 = 20 + a(4)
</span><span>4 x a = -20
</span>
so, the answer is <span>-5 m/s^2. or -5 meter per second</span>
1) draw a diagram.
2) label diagram. (split the 100 degrees into 50, (which is right down the middle) to make a right angle triangle.)
3) since its a free body diagram, the forces known must be labelled. (force of gravity). this shows that the straight vertical line of the right angle triangle is Fg (force gravity). label it.
4) use trigonometry. rearrange the equation to solve for what needs to be known.
angles known: 50 (split 100 in half to make a right angle triangle), 90 (since its right angle), and 40 (180-90-50 = 40)
sides known: vertical lined up with the 90 degree angle. Fg. --> fg=mg=500N x 9.81m/s^2 = 4905N
use formula: sin or cos
i used sin. sin(40) = 4905 / ?
- times '?' on both sides. : sin(40) x '?' = 4905
-divide both sides by sin(40): '?' = 4905/ sin(40)
--> Solve.
<span>Answer:The weight of the door creates a CCW torque given by
Tccw = 145 N*3.13 m / 2
You need a CW torque that's equal to that
Tcw = F*2.5 m*sin20</span>