answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tamaranim1 [39]
2 years ago
9

Assume you have a rocket in Earth orbit and want to go to Mars. The required change in velocity is ΔV≈9.6km/s . There are two op

tions for the propulsion system --- chemical and electric --- each with a different specific impulse. Recall that the relationship between specific impulse and exhaust velocity is: Vex=g0Isp Using the Ideal Rocket Equation and setting g0=9.81m/s2 , calculate the propellant fraction required to achieve the necessary ΔV for each of propulsion system. Part 1: Cryogenic Chemical Propulsion First, consider a cryogenic chemical propulsion system with Isp≈450s . Enter the required propellant fraction as a proportion with at least 2 decimal places (i.e., enter 0.25 to represent 25%): incorrect Part 2: Electric Propulsion Next, consider an electric propulsion system with Isp≈2000s . Enter the required propellant fraction as a proportion with at least 2 decimal places (i.e., enter 0.25 to represent 25%):
Physics
1 answer:
Nostrana [21]2 years ago
8 0

Answer: Part 1: Propellant Fraction (MR) = 8.76

Part 2: Propellant Fraction (MR) = 1.63

Explanation: The Ideal Rocket Equation is given by:

Δv = v_{ex}.ln(\frac{m_{f}}{m_{e}} )

Where:

v_{ex} is relationship between exhaust velocity and specific impulse

\frac{m_{f}}{m_{e}} is the porpellant fraction, also written as MR.

The relationship v_{ex} is: v_{ex} = g_{0}.Isp

To determine the fraction:

Δv = v_{ex}.ln(\frac{m_{f}}{m_{e}} )

ln(MR) = \frac{v}{v_{ex}}

Knowing that change in velocity is Δv = 9.6km/s and g_{0} = 9.81m/s²

<u>Note:</u> Velocity and gravity have different measures, so to cancel them out, transform km in m by multiplying velocity by 10³.

<u />

<u>Part 1</u>: Isp = 450s

ln(MR) = \frac{v}{v_{ex}}

ln(MR) = \frac{9.6.10^{3}}{9.81.450}

ln (MR) = 2.17

MR = e^{2.17}

MR = 8.76

<u>Part 2:</u> Isp = 2000s

ln(MR) = \frac{v}{v_{ex}}

ln (MR) = \frac{9.6.10^{3}}{9.81.2.10^{3}}

ln (MR) = 0.49

MR = e^{0.49}

MR = 1.63

You might be interested in
Sebuah benda dijatuhkan bebas dari ketinggian 200 m jika grafitasi setempat 10 m/s maka hitunglah kecepatan dan ketinggian benda
Pie
Please post in English so i or someone else can help you.
7 0
2 years ago
Charge q1 is distance s from the negative plate of a parallel-plate capacitor. Charge q2=q1/3 is distance 2s from the negative p
Svetlanka [38]

Answer:

The ratio (U₁/U₂) = 6

Explanation:

U, the potential energy is given as

U = kqQ/r

k = Coulomb's constant

q = charge we're concerned about

Q = charge of the negative plate of the capacitor

r = distance of q from the negative plate of the capacitor.

For charge q₁

U₁ = kq₁Q/s

U₂ = kq₂Q/2s

But q₂ = q₁/3

U₂ becomes U₂ = kq₁Q/6s

U₁ = kq₁Q/s

U₂ = kq₁Q/6s

(U₁/U₂) = 6

5 0
2 years ago
A steel cable lifting a heavy box stretches by ΔL . In order for the cable to stretch by only half of ΔL , by about what factor
il63 [147K]

Answer:

2.0

Explanation:

because I'm a geek and ik

6 0
2 years ago
As a rough approximation, the human body may be considered to be a cylinder of length L=2.0m and circumference C=0.8m. (To simpl
Brilliant_brown [7]

Answer:

Thermal Power = 460W

Explanation:

From Stephan-Boltzmann Law Formula;

P = єσT⁴A

Where,

P = Radiation energy

σ = Stefan-Boltzmann Constant

T = absolute temperature in Kelvin

є = Emissivity of the material.

A=Area of the emitting body

Now, σ = 5.67 x 10^(-8)

є = 0.6

Temperature = 30°C and coverting to kelvin = 30 + 273 = 303K

Area ; since we are to consider the sides of the human body as 2m and 0.8m,thus area = 2 x 0.8 = 1.6

Thus thermal power = 0.6 x 5.67 x 10^(-8) x303⁴ x 1.6 = 458. 8W

Normally, we approximate to the nearest 10W. Thus, thermal power is approximately 460W

4 0
2 years ago
A small crack occurs at the base of a 15.0-m-high dam. The effective area through which water leaves is 2.30 × 10-3 m2. (a) Igno
vova2212 [387]

Answer

given,                                              

height of the dam = 15 m            

effective area of water = 2.3 x 10⁻³ m²

Using energy conservation              

    m g h = \dfrac{1}{2}mv^2

    v= \sqrt{2gh}                  

    v= \sqrt{2\times 9.8 \times 15}

    v= \sqrt{294}              

           v = 17.15 m/s            

 discharge of water

      Q = A V                            

      Q = 2.3 x 10⁻³ x 17.15    

      Q = 0.039 m³/s

3 0
2 years ago
Other questions:
  • Kevin, whose mass is 80 kg, is moving along at a velocity of 4 m/s. He doubles his velocity by going down a hill. How much kinet
    8·2 answers
  • What is needed to give a large boulder a large acceleration?
    14·2 answers
  • Russ makes the diagram below to organize his notes about how Newton’s first law describes objects at equilibrium.
    13·2 answers
  • Two infinite parallel surfaces carry uniform charge densities of 0.20 nC/m2 and -0.60 nC/m2. What is the magnitude of the electr
    6·1 answer
  • A 5.0-g marble is released from rest in the deep end of a swimming pool. An underwater video reveals that its terminal speed in
    11·1 answer
  • Two objects attract each other gravitationally. If the mass of each object doubles, how does the gravitational force between the
    5·1 answer
  • When traveling on narrow mountain roads _______________. A. honk your horn if you cannot see at least 200 ft ahead B. expect oth
    12·1 answer
  • A child is playing with a spring toy, first stretching and then compressing it.
    10·1 answer
  • Josh is learning to dive.
    7·1 answer
  • Tech A says that some electric actuators are positioned by an A/C ECU which checks the air flow with sensors. Tech B says that e
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!