answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
2 years ago
6

A small crack occurs at the base of a 15.0-m-high dam. The effective area through which water leaves is 2.30 × 10-3 m2. (a) Igno

ring viscous losses, what is the speed of water flowing through the crack? (b) How many cubic meters per second of water leave the dam?
Physics
1 answer:
vova2212 [387]2 years ago
3 0

Answer

given,                                              

height of the dam = 15 m            

effective area of water = 2.3 x 10⁻³ m²

Using energy conservation              

    m g h = \dfrac{1}{2}mv^2

    v= \sqrt{2gh}                  

    v= \sqrt{2\times 9.8 \times 15}

    v= \sqrt{294}              

           v = 17.15 m/s            

 discharge of water

      Q = A V                            

      Q = 2.3 x 10⁻³ x 17.15    

      Q = 0.039 m³/s

You might be interested in
To what potential should you charge a 2.0 μF capacitor to store 1.0 J of energy?
Bess [88]
E = (1/2)CV²
1 = (1/2)*(2*10⁻⁶)V²
10⁶ = V²
1000 = V

You should charge it to 1000 volts to store 1.0 J of energy.
6 0
2 years ago
The study of alternating electric current requires the solutions of equations of the form i equals Upper I Subscript max Baselin
KiRa [710]

Answer:

Explanation:

i = Imax sin2πft

given i = 180 , Imax = 200 , f = 50  , t = ?

Put the give values in the equation above

180 = 200 sin 2πft

sin 2πft = .9

sin2π x 50t = .9

sin 360 x 50 t = sin ( 360n + 64 )

360 x 50 t = 360n + 64

360 x 50 t =  64 ,  ( putting n = 0 for least value of t )

18000 t = 64

t = 3.55 ms  .

8 0
2 years ago
Two long straight wires enter a room through a window. One carries a current of 2.9A into the room, while the other carries a cu
Degger [83]

Answer and Explanation:

curents i = 2.9 A

           i ' = 4.4 A

the magnitude (in T.m) of the path integral of B.dl around the window frame = μo * current enclosed

          = μo* ( i '- i )

Since from Ampere's law

where μ o = permeability of free space = 4π * 10 ^-7 H / m

plug the values we get the magnitude (in T.m) of the path integral of B.dl = ( 4π*10^-7 ) (2.9+4.4)

                                 = 1.884 * 10^-6 Tm

4 0
2 years ago
Consider an object with s=12cm that produces an image with s′=15cm. Note that whenever you are working with a physical object, t
Leni [432]

A. 6.67 cm

The focal length of the lens can be found by using the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}

where we have

f = focal length

s = 12 cm is the distance of the object from the lens

s' = 15 cm is the distance of the image from the lens

Solving the equation for f, we find

\frac{1}{f}=\frac{1}{12 cm}+\frac{1}{15 cm}=0.15 cm^{-1}\\f=\frac{1}{0.15 cm^{-1}}=6.67 cm

B. Converging

According to sign convention for lenses, we have:

- Converging (convex) lenses have focal length with positive sign

- Diverging (concave) lenses have focal length with negative sign

In this case, the focal length of the lens is positive, so the lens is a converging lens.

C. -1.25

The magnification of the lens is given by

M=-\frac{s'}{s}

where

s' = 15 cm is the distance of the image from the lens

s = 12 cm is the distance of the object from the lens

Substituting into the equation, we find

M=-\frac{15 cm}{12 cm}=-1.25

D. Real and inverted

The magnification equation can be also rewritten as

M=\frac{y'}{y}

where

y' is the size of the image

y is the size of the object

Re-arranging it, we have

y'=My

Since in this case M is negative, it means that y' has opposite sign compared to y: this means that the image is inverted.

Also, the sign of s' tells us if the image is real of virtual. In fact:

- s' is positive: image is real

- s' is negative: image is virtual

In this case, s' is positive, so the image is real.

E. Virtual

In this case, the magnification is 5/9, so we have

M=\frac{5}{9}=-\frac{s'}{s}

which can be rewritten as

s'=-M s = -\frac{5}{9}s

which means that s' has opposite sign than s: therefore, the image is virtual.

F. 12.0 cm

From the magnification equation, we can write

s'=-Ms

and then we can substitute it into the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}\\\frac{1}{f}=\frac{1}{s}+\frac{1}{-Ms}

and we can solve for s:

\frac{1}{f}=\frac{M-1}{Ms}\\f=\frac{Ms}{M-1}\\s=\frac{f(M-1)}{M}=\frac{(-15 cm)(\frac{5}{9}-1}{\frac{5}{9}}=12.0 cm

G. -6.67 cm

Now the image distance can be directly found by using again the magnification equation:

s'=-Ms=-\frac{5}{9}(12.0 cm)=-6.67 cm

And the sign of s' (negative) also tells us that the image is virtual.

H. -24.0 cm

In this case, the image is twice as tall as the object, so the magnification is

M = 2

and the distance of the image from the lens is

s' = -24 cm

The problem is asking us for the image distance: however, this is already given by the problem,

s' = -24 cm

so, this is the answer. And the fact that its sign is negative tells us that the image is virtual.

3 0
2 years ago
A 5kg bucket hangs from a ceiling on a rope. A student attaches a spring scale to the buckets handle and pulls horizontally on t
7nadin3 [17]
I don’t know what the angle is in your diagram so I used the angle from the vertical.

6 0
2 years ago
Other questions:
  • Lexy used the formula shown to calculate the force of gravity on a space shuttle. Fg = G What does 3 × 105 kg represent? the dif
    10·1 answer
  • A 38 kg crate rests on a floor. A horizontal pulling force of 170 N is needed to start the crate
    15·1 answer
  • The figure above represents a stick of uniform density that is attached to a pivot at the right end and has equally spaced marks
    13·1 answer
  • The nucleus of an atom has all of the following characteristics except that it
    5·1 answer
  • A carousel - a horizontal rotating platform - of radius r is initially at rest, and then begins to accelerate constantly until i
    5·1 answer
  • Two students are playing paddle ball with a 5 kg spongy ball. If the ball is thrown at the batter with a speed of 5 m/s and boun
    15·1 answer
  • A 4.0 kg block is resting on a rough horizontal table. The coefficient of static friction us is 0.60. The static friction betwee
    7·1 answer
  • If the ac peak voltage across a 100-ohm resistor is 120 V, then the average power dissipated by the resistor is ________
    12·1 answer
  • Which of the following has a particles in most irregular pattern​
    10·1 answer
  • One day, Pinki was ironing the clothes in her room. After half an hour of ironing, the light went off and Pinki went outside to
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!